100 кг/м3, и потребует 5.1019 тонн материала (почти целая Луна!). На транспортировку его уйдет не менее 4.1037 Дж энергии. Осуществить это строительство, не нарушая баланса энерговыделения в окрестностях Солнца, можно при использовании не более 0,1 % солнечной мощности, то есть порядка 4.1023 Вт, а потому на стройку придется затратить не менее 3 млн. лет (таково отношение энергоемкости транспортировки к мощности транспорта). Для обеспечения выходной мощности 1018 Вт пришлось бы сжигать 100 млн. тонн ядерного горючего в год.
Еще один штрих к этой грандиозной картине — ежегодный бюджет строительства при более чем скромном предположении о стоимости 1 кВт. час 1 копейка. В период стройки он составил бы более 3.1021 рублей, а в тихий сезон эксплуатации всего в 400 тысяч раз меньше…
Все это далеко выходит за рамки вообразимых на сегодняшний день возможностей земной цивилизации.
Рассматривался также некий промежуточный вариант Контакта — так называемая гипотеза Р. Брейсвелла, согласно которой активная цивилизация засевает доступную ей окрестность Вселенной специальными зондами, принимающими на себя функции сигнальной связи. Эта идея связана с попыткой объединить достоинства транспортного и сигнального методов.
Действительно, посылка экипажей в межзвездное пространство без предварительной разведки — слишком рискованное предприятие. Не имея уверенности в существовании высокоразвитых форм жизни вблизи конкретной звезды, не лучше ли направить в ее окрестность автоматический зонд? Его перемещение на дальние расстояния допускает условия, в которых никогда не стал бы путешествовать человеческий коллектив. Например, можно допустить перегрузки в 100 g или 1000 g и значительно сэкономить время (при а0 ~ 1000 g корабль примерно за 8 часов выйдет в субсветовой режим, так что при полете на 10 пс за 32,5 года, истекших на планете-отправителе, на аппарате пройдет всего 35 часов).
Корабль-матка мог бы последовательно приближаться к дальним окрестностям намеченных звезд, запуская зонды на околозвездные орбиты в планетарных зонах[171]. До поры до времени зонды вели бы себя как пассивные наблюдатели, следя за развитием ситуации на планетах. Естественно думать, что одним из первых проявлений технологической цивилизации стало бы заметное увеличение радиосветимости ее планеты. Зонд-наблюдатель, настроенный, например, на радиоокно Земли, отметил бы работу уже первых коротковолновых станций и, возможно, отреагировал бы на нее.
Самое любопытное, что в земных условиях действительно наблюдалось нечто подобное. В первых же каналах коротковолновой связи отмечалось появление четкого запаздывающего эха — словно кто-то через небольшой промежуток времени дублирует исходный сигнал. Разумеется, таким дублером не обязательно должен быть межзвездный зонд, гораздо правдоподобней, что какие-то атмосферные явления обеспечивают задержку и репродукцию сигнала. Но естественное объяснение пока во многом неудовлетворительно, и гипотеза внеземного зонда получила заметное развитие. По данным о радиоэхе подсчитано даже, что аппарат пришел в Солнечную систему примерно 13 тысяч лет назад от звезды ? Волопаса…
К сожалению, достоверность таких выводов крайне невелика, и соответствующее атмосферное явление скорее всего вытеснит этот вариант мифа о пришельцах.
Гипотеза Брейсвелла была и остается интереснейшей идеей, но она относится скорее к тонким вопросам технической политики внеземных цивилизаций[172]. Энергетическая проблема транспортного Контакта ею никак не решается и не обходится. Специалисты по космонавтике и смежным областям за последние десятилетия немало спорили о роли тех или иных путей в исследовании околоземного пространства, Луны и планет: что эффективней людские экипажи или автоматика. Но все споры остались бы академическими упражнениями, не реши они предварительно транспортно-энергетическую проблему…
Поиск надежды
Рассмотренные методы Контакта приводят к очевидному заключению цивилизация, желающая надежно оповестить о себе Галактику или хотя бы достаточно большой ее участок, должна уметь зажигать звезды или, по крайней мере, регулировать процессы в звездных масштабах. Вывод практически не зависит от того, прибегла ли она к транспортной или сигнальной связи любой способ передачи физической информации вроде бы сразу выходит на звездные параметры энергетики и технологии. Не зависит вывод и от более мелких деталей технических достижений, он основан на общих законах распространения и регистрации потоков энергии.
Прийти к такому результату можно было и крайне простым путем, отталкиваясь от того, что при желании создать искусственный объект, который, скажем, в масштабе Галактики регистрируется не хуже обычных звезд, мы, естественно, должны построить настоящую звезду. Если в процессе строительства не нарушаются законы физики, то параметры объекта можно без особой погрешности заимствовать из астрофизических справочников[173].
В отношении всенаправленных маяков это вполне очевидно. Но и с фотонными кораблями ситуация очень похожа, особенно когда речь идет об очень далеких бросках. Посмотрим на них предельно просто. С физической точки зрения, необходимо передать энергию порядка Мкс2 на сверхдальнее расстояние с обязательным условием, чтобы ее концентрация не падала ниже определенного уровня, диктуемого конструкцией полезного объема. Время выхода в субрелятивистский режим (t0 = с/а0) определяет эффективное время жизни «звезды», выжигающей основную часть стартовой энергии (М0с2) как раз за t0. Отсюда и ее стартовая светимость:
L C M0c2/t0 ~ (Мкс2/t0r02)r2.
Сопоставляя ее с общей формулой для светимости направленного маяка (f — регистрируемый поток энергии)
L = (f?)r2,
видим, что ракета как бы играет роль сильно сфокусированного светового луча: ? ~ re/r, где re — ее поперечник. А направлен этот луч, разумеется, с условием, чтобы в конце разгона регистрировался энергетический поток ~ M0c2/re2t0, то есть ракета массы М0 «распределилась» по площади ~ re2 за время t0. Резкое различие с лазером, обслуживающим, например, центр Галактики и требующим в 1025 меньшей мощности, обусловлено тем, что хотя «фокусировка» ракеты сильней (? ~ 10–35 против 10–14 у лазера), но от нее регистрируется чудовищный поток порядка 1028 Вт/м2, тогда как для лазера f ~10–18 Вт/м2[174].
Неужели надежная межзвездная связь отгорожена от нас непроходимым энергетическим барьером?
Хотелось бы верить, что дело совсем в ином, скорее всего, в какой-то неосознанной спешке заглянуть в жизнь цивилизаций II или III типа, не став еще цивилизацией класса С.
Иной взгляд на проблему средств Контакта должен развиться задолго до овладения звездной энергетикой, и обход трудностей возможен скорее на социально-экологическом, чем на собственно энергетическом пути. Это очень вероятно, поскольку, как уже говорилось, главные трудности транспортного и сигнального вариантов носят социально-экологический характер. Они наследство древней и не слишком древней гигантомании, всевозможных «неисчерпаемостей» и «покорений природы».
Пожалуй, первое, что приходит на ум, когда вспоминаешь о древних цивилизациях, — это египетские пирамиды. Великолепно правильные сооружения кажутся бесспорным образцом деятельности разумного социального организма. Но что бы подумали о них древнейшие североафриканские охотники, обитавшие там за 8-10 тысячелетий до возникновения Древнего царства? По каким признакам могли бы отличить строения