(Местная Система). Памятуя об опасных отношениях с межзвездной средой, сделаем так, чтобы эффективное время выхода в субрелятивистский режим позволило пройти Галактику при не слишком больших скоростях. Если выбрать r0 = 104 пс, то разгон придется вести с ускорением а0 = 3.10-4 м/с2. Полет в режиме разгон-торможение на расстояние 106 пс займет у экипажа порядка 300 тысяч лет, из которых первые и последние 30 тысяч пройдут в ситуации относительно «медленного» движения. На Земле же пройдет немногим более 3 млн. лет. Стартовая масса ракеты со 100-тонной полезной капсулой составит порядка 106 тонн, а стартовая светимость порядка 1014 Вт, при эффективности двигателя около 105 Вт/кг.

Можно было бы обсудить и другие варианты, но основные изменения видны и здесь[176]. Колоссальный выигрыш в энергетике получается из-за малого ускорения и одностороннего полета. Допустимость последнего как раз и составляет суть процесса генерации цивилизаций.

Расставаясь с коллективом космонавтов на несколько миллионов лет, мы фактически создаем особую эволюционную ветвь человечества, которая сотни тысяч собственных лет будет развиваться по особым законам[177]. Первые тысячелетия мы, вероятно, сумеем довольно оживленно обмениваться с ними информацией и наблюдать за постепенным расхождением в путях эволюции.

Дело не в возвращении — в принципе можно было бы ввести его в проект, в 10 раз сократив дальность полета и не меняя энергетики. Но и в этом случае мы не имели бы возвращения как такового, а скорее — запланированный Контакт двух цивилизаций, которые когда-то произошли от одного ствола, но потом огромные сроки развивались совершенно самостоятельно — земная 6,3.105 лет, а ракетная всего вдвое меньше. И кстати, имеем ли мы право жестко программировать действия цивилизации (в частности, возврат на Землю), которая собирается самостоятельно развиваться многие тысячи лет?

Такова вероятная сверхдальняя перспектива межгалактической транспортной связи. Создав цивилизацию вдали от себя, мы получим и превосходную возможность направленного сигнального Контакта. Но масштабы стратегического планирования, конечно, порождают недоверие — больно они велики. Понятно, что в слишком больших временных промежутках трудно рассматривать земную цивилизацию как некую единую общность.

Обратимся поэтому к несколько меньшим масштабам собственной Галактики. Я думаю, что здесь проявляются особые обстоятельства, не позволяющие использовать ультрарелятивистский транспорт. Средняя плотность межгалактического вещества порядка одного атома в кубическом метре. Внутри Галактики она заметно выше, и слишком сильный разгон корабля может привести к тому, что основная доля его мощности будет тратиться на выжигание вакуума. Если в межгалактическом пространстве допускалась бомбардировка слабым потоком протонов с энергиями до 100 Гэв, то внутри Галактики, видимо, целесообразно ограничиться кинетическими энергиями протонов порядка 1 Гэв. Отсюда сразу следует, что вместо варианта (r/r0) ~ 100, который мы рассматривали выше (r0 ~ 104 пс, r ~ 106 пс), следует перейти к варианту (r/r0) ~ 1, то есть вообще отказаться от выхода в ультрарелятивистский режим (r/r0 1) и ограничиться скоростями до v ~ 0,7? 0,9 с[178].

Например, полет к центру Галактики в режиме разгон-торможение с ускорением а0 = 3.10-4 м/с2 (r0 ~ 104 пс, r ~ 104 пс) 100-тонной капсулы потребует стартовой массы всего 685 тонн. Предусмотрев возвращение, необходимо довести ее до 4700 тонн при стартовой светимости порядка 4.1011Вт. Полет туда и обратно будет длиться по земным часам около 146 тыс. лет, а у экипажа пройдет на 20 тыс. лет меньше (?/t ~ 0,86). Как видим, речь опять-таки идет о планировании в масштабе тысячи веков.

Полеты в окрестностях Солнечной системы (r ~ 100 пс) с тем же ускорением требуют уже деци- световых ракет (vmax/c ~ 0,1). Затраты времени на полет туда и обратно составляют до 12 000 лет и практически совпадают для космонавтов и землян (разность хода часов в пределах 1 %). Загрузка топливом при этом доходит всего до 50 % полезной массы корабля. Это позволяет довольно свободно обсуждать стартовую массу капсулы с полезным грузом.

Так выглядят оценки дальних полетов. В них, конечно, больше проблем, чем решений. Сам двигатель со световым истечением рабочего вещества (аннигилятор? ускоритель частиц? суперлазер?) пока не слишком ясен. Современные представления не допускают заточения микроцивилизации в 100-тонной и, пожалуй, даже миллионнотонной капсуле. Увеличение же полезной массы ведет к крупным энергетическим трудностям. Но все-таки ряд задач лежит в пределах научного обсуждения, а полет к ближайшим звездам в радиусе 10-100 парсек выглядит хоть и дерзкой, но вполне осуществимой мечтой.

За резкое снижение технических трудностей пришлось заплатить огромным увеличением сроков. Решение проблемы транспортного Контакта вылилось в решение проблемы размножения цивилизаций, которая лишь на определенный процент есть задача техническая. На первый план выходит необходимость в планировании нашей эволюции в масштабах миллионов (межгалактическая связь) или десятка тысяч (ближайшие звезды) лет. Создать модель такого размера будущего, осознать свое право на творение микроцивилизаций неизмеримо сложней, чем сконструировать приличный звездолет. Например, необходимо будет представить, что Земля станет источником совершенно особых эволюционных ветвей — цивилизаций-кочевников, не привязанных к определенной звезде, вынужденных функционировать в очень ограниченных жилых объемах, и мировосприятие и цели таких скитальцев могут быть крайне отличны от всего, что мы предполагаем для обитателей геоподобных планет.

Прежде чем броситься на галактические подвиги, землянам предстоит преодолеть многие промежуточные этапы. Надежды на Контакт пока целиком сводятся к поиску сигналов и, возможно, созданию собственных лазерных маяков.

Центральная проблема поиска — критерии выделения искусственных сигналов среди океана астрономических данных. Непосредственно доступны наблюдению энергетические потоки (свет, радиоволны, ? — кванты и т. п.), исходящие от тех или иных космических тел. Тела могут быть плодами астроинженерной деятельности внеземной цивилизации, однако надо полагать, что известные нам законы физики в таком строительстве будут соблюдены. И в первую очередь мы будем вынуждены трактовать их как естественные тела с конкретными, пусть и удивительными, свойствами. Ориентироваться здесь на то, что при наблюдениях сразу проявится неизвестное земной науке качество, не слишком уместно. Само строение тел должно описываться физическими закономерностями, и, столкнувшись с новой закономерностью, мы совершим лишь новое открытие в физике. Такова история с пульсарами — и теперь никто не мешает думать, что это какие-то маяки, но плодотворный результат свелся к открытию сверхплотных звездных остатков.

Современная физика (и астрофизика, в частности) не включает в себя каких-либо четких критериев искусственности или естественности объектов, поскольку вообще не имеет дела с системами, которые, по нашему разумению, способны на создание искусственных объектов. Включение может произойти только после того, как появится общая космогоническая схема рождения звезд и планет третьего поколения — искусственных спутников в той или иной планетной системе.

Объекты такого рода обладают одним важным качеством, резко отличающим их от звезд и планет второго поколения, — поведенческой реакцией. Искусственный спутник можно описывать как совершенно естественное тело, кроме важнейшего этапа его жизни — вывода на орбиту.

Наблюдая такое явление издали, мы долго бы ломали голову — отчего кусок вещества данной планеты ни с того ни с сего сорвался с нее и перекочевал на ближайшую орбиту? Поскольку выход обычно сопровождается каким-то свечением, мы придумали бы любопытную гипотезу о сверхмощных вулканах, действующих на данной планете и способных метать камни в космическое пространство. Однако вулкан, систематически концентрирующий энергию на одном-единственном камне, выглядит крайне неестественно (вероятность такой концентрации чудовищно мала и никак не совместима с десятками и сотнями событий в год). И тут пришлось бы сообразить, что выброшенное тело хотя бы часть своего пути обладало автономным двигателем. В рамках механики тела переменной массы, способного к направленному выбросу импульса, мы, конечно, объяснили бы появление спутника на орбите. Потом было бы нетрудно объяснить и небольшие изменения траектории (коррекция орбиты по команде с планеты) и многое другое.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату