F – число Фарадея;

к – const скорости;

Сox, Cred – концентрация окислительной и восстановленной форм реагентов;

?GKэнергия активации катодного процесса;

?GAэнергия активации анодного процесса.

Энергия активации зависит от величины накладываемого потенциала, в то же самое время эта энергия распределяется между прямой и обратной реакцией в соответствии с коэффициентом переноса – а, т. е.

? = ?пр – ?об.

Коэффициент переноса ?– доля энергии электрического поля в ДЭС, которая приходится на прямую и обратную реакции.

?– коэффициент переноса для катодной реакции;

(1 – ?) – для анодного процесса (коэффициент переноса).

?Gk = ZFE ?, (4)

?GA = ZFE(1 – ?) (5)

С учетом уравнений (4), (5) уравнения (2), (3) примут следующий вид:

Различие знаков у электрона объясняется тем, что катодная поляризация («–») ускоряет прямую реакцию и замедляет обратную реакцию.

Введем в уравнение (8) плотность тока обмена – i0.

Вместо потенциала введем перенапряжение:

полное уравнение поляризационной кривой.

Вывод из уравнения (10):

1) при равновесном потенциале, когда ток равен нулю, уравнение (10) преобразуется в уравнение Нернста:

2) при малых величинах ?:

При сдвижении потенциала от равновесного (59 mВ);

? = a + b ln i– уравнение Тафеля в простом виде при замедлении стадии переноса заряда.

Величина i0 (тока обмена) и ? (коэффициента переноса) – основные кинетические параметры стадии переноса заряда (q). Они могут быть определены из экспериментальных измерений, для этого на исследуемом электроде снимают зависимость ?– i или Ei – i.

Поляризационная кривая судит о коррозионной стойкости металлов.

Перестраиваем поляризационную кривую в координаты:

Определяем const а и bв уравнении Тафеля, определяем b:

Из коэффициента bнайдем а, после подставим в а и найдем i0.

Перенапряжение Н2 (водорода).

Источник выделения Н2 – Н2SO4 >Н ++ НSO4

Источник выделения Н2 – Н2О > Н++ ОН-.

В рН < 7 Н2 выделяется по реакции.

Н2 всегда выделяется в потенциалах более отрицательных, чем равновесный потенциал, то есть с перенапряжением.

Суммарный процесс выделения водорода состоит из следующих стадий:

1) доставка к поверхности катода реагирующих частиц Н3О+;

2) разряд Н3О+ с образованием Надс

3) удаление выделяющегося Надс с поверхности электрода может происходить тремя путями:

а) каталитическая рекомбинация

где Кat материал катода;

б) электрохимическая десорбция – удаление Н2 происходит на уже адсорбированных атомах

в) эмиссия включает две стадии:

Для Pt замедлена стадия а), для других металлов (Hg, Pb) – стадия разряда, Н+ – самый подвижный.

3. Кинетические особенности электроосаждения металлов и сплавов

Процесс электроосаждения металлов, сплавов протекает через последовательность стадий: диффузия катионов металлов к поверхности электрода из объема раствора, вхождение катионов в ДЭС (двойной электрический слой), потери сольватной оболочки, переход катионов в состояние адсорбции атома, полный перенос заряда с поверхности электрода на разряжающийся ион или адсорбированного атома (ад. атома) и образование зародышей металлов, рост зародышей и заполнение поверхности новой фазы в виде сплошного слоя, рост слоя осадка в толщину.

Процесс электровыделения не зависит от состояния поверхности электрода, в частности, большое влияние на ?(перенапряжение) процесса оказывает концентрация вакансий на поверхности электрода. Кристаллическая решетка каждого металла содержит определенное количество равновесных вакансий (свободных незанятых узлов в кристаллической решетке). Наличие таких пустот в структуре поверхностного слоя облегчает образование ад.атомов, так как в местах вакансий имеет место более сильное энергетическое воздействие кристаллической решетки на образующиеся атомы новой фазы. После заполнения этих активных мест начинается рост зародышей, т. е. образование скоплений атомов, которые постепенно заполняют всю поверхность. С другой стороны, скорость реакции электровыделения металлов зависит от состояния катионов этого металла в растворе. В растворе катионы находятся в сольватированном виде или в виде комплексов. Разрушение сольватной оболочки происходит на границе плотного слоя Гельмгольца с диффузной частью ДЭС. Таким образом, реакции разряда, протекающие в плотном слое Гельмгольца, энергетически возможны только в том случае, если ионы металла преодолевают потенциальный барьер. Высота потенциального барьера, т. е. величина энергии, которую ионам в растворе нужно преодолеть, чтобы попасть из раствора в плотный слой Гельмгольца, может быть различной, и определяется она природой растворителя, лигандов, прочностью связей в комплексах.

Пример:

(заряд комплекса не меняется, так как молекула нейтральна).

Сама стадия переноса зарядов также протекает стадийно

Анионные комплексы наиболее прочные, и последняя стадия состоит из процесса распада до свободного иона на поверхности электрода в слое Гельмгольца. Это обусловлено тем, что анионы, обладающие высокой поверхностной активностью, связываются с поверхностью электрода и оказывают влияние на распределение заряда в ДЭС.

Итак, помимо диффузии в объеме раствора, диффузии ад. ионов, ад. атомов по поверхности, стадий переноса заряда, образования зародышей и роста зародышей в сплошной слой (стадия кристаллизации), на скорость реакции могут оказывать влияние также реакции разложения комплексов в растворе, гомогенная химическая стадия, предшествующая стадии разрядов, и гетерогенная химическая стадия на поверхности электродов. Скорость реакции определяется концентрацией потенциал-определяющих частиц в растворе; концентрация потенциал-определяющих частиц зависит от состояния ионов. Состояние ионов в растворе определяется энергией взаимодействия с молекулами растворителя и лигандами. Потенциал электрода

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату