нужна: необходимое количество корма вполне можно собрать на расстоянии двух-трех метров от гнезда, “а на таком расстоянии прекрасно действует и пахучий след”6. Напротив, у тех видов, которые живут огромными семьями и собирают корм, удаляясь от гнезда на значительное расстояние, имеются коммуникативные системы, обладающие богатыми выразительными возможностями.
Для звучащей речи большое значение имеют формантные различия — прежде всего именно по ним (а не, скажем, по громкости, длительности или высоте основного тона) мы отличаем разные фонемы друг от друга. Но способность использовать формантные различия представлена и у животных. Как свидетельствует Т. Фитч, виды, использующие звуковую коммуникацию, — например, зеленые мартышки (верветки), японские макаки, журавли, — способны различать форманты не хуже людей7. Даже у лягушек есть специальные детекторы, настроенные на те частоты, которые особенно важны для каждого конкретного вида. Формантные различия могут использоваться, в частности, для того, чтобы отличать друг от друга сородичей8, для распознавания разных типов сигналов опасности и т. п.
Множество аналогов в животном мире имеет человеческая способность к рекурсии. Самый простой (по крайней мере, с точки зрения человека) мыслительный процесс, требующий применения рекурсии, — это счет: каждое следующее число на единицу больше предыдущего. Но считать, как показали исследования, умеют не только люди9, но и шимпанзе (этому посвящены, в частности, специальные эксперименты, проводимые в Киото под руководством Тецуро Мацузавы10), попугаи11, ворoны12и муравьи13. В опытах З.А. Зориной и А.А. Смирновой было показано, что серые вороны могут складывать числа в пределах 4 (и даже оперировать при этом обычными “арабскими” цифрами), муравьи в экспериментах Ж.И. Резниковой продемонстрировали способность “складывать и вычитать в пределах 5”14. Макаки-резусы (в опытах американских исследователей Элизабет Бреннон и Герберта Террейса) “считали” (последовательно дотрагиваясь на экране до изображений групп с разным количеством предметов) по возрастанию и по убыванию от 1 до 4 и от 5 до 915.
Наиболее разработана аналогия между человеческим языком и песней певчих птиц (это один из подотрядов отряда воробьиных). Песня делится на слоги — отдельные спектральные события, имеющие более звучную вершину и менее звучные края. Каждый отдельный слог, подобно фонеме, не имеет собственного значения {28}, но их последовательность складывается в песню, несущую определенный смысл. Для распознавания песни существенно, чтобы слоги шли в определенном порядке — иначе представители соответствующего вида не опознают песню как свою16.
Подобно языку, песня выучивается во время чувствительного периода, т. е. в ее передаче велико значение культурной составляющей. В чувствительном периоде есть стадия “лепета” (или “подпесни”, англ.
Рис. 4.2.
У певчих птиц, а также у попугаев и колибри, которые тоже обучаются своим звуковым коммуникативным сигналам посредством звукового подражания, контроль за звукопроизводством осуществляется не теми мозговыми структурами, что у тех видов, у которых звуковые сигналы являются врожденными18. Повреждения аналогичных участков мозга приводят к аналогичным нарушениям звукопроизводства: при одних птицы, подобно людям с афазией Брока, теряют способность правильно составлять последовательности звуков, при других — способность выучивать новые звучания, при третьих — сохраняют лишь способность к эхолалическому повторению19.
Множество аналогичных черт у языка и с коммуникацией китообразных. В обоих случаях носителем информации является звук (правда, у китообразных, в отличие от человека, большая часть сигналов передается в ультразвуковом диапазоне). У дельфинов есть “имена собственные” — знаменитый “свист- подпись”: этим сигналом (индивидуальным для каждой особи) дельфины завершают свои сообщения, и с его помощью их можно позвать. У касаток
Звуковые сигналы дельфинов-афалин (
Скорее всего, столь сложное устройство сигналов говорит о том, что у дельфинов (как и у людей) есть возможность (а значит, вероятно, и необходимость) кодировать большое (по подсчетам Маркова, потенциально даже бесконечно большое) количество разнообразной информации.
По-видимому, коммуникативная система дельфинов позволяет им передавать в том числе и весьма конкретные сведения. В эксперименте, проведенном Уильямом Эвансом и Джарвисом Бастианом23, два дельфина (самец Базз и самка Дорис) были обучены нажимать на педали в определенном порядке, чтобы получать пищевое подкрепление. Порядок менялся в зависимости от того, ровно горела лампочка над бассейном или же мигала, а подкрепление выдавалось лишь в том случае, когда на педали в правильном порядке нажимали оба дельфина. Когда лампочку установили так, чтобы ее могла видеть только Дорис, она оказалась в состоянии “объяснить” Баззу через непрозрачную стенку бассейна, в каком порядке следует нажимать на педали, — в 90 % случаев правильно.
Рис. 4.3.
В опытах В.И. Маркова и его коллег дельфины передавали друг другу информацию о размере мяча (большой он или маленький) и о том, с какой стороны предъявляет его экспериментатор (справа или слева)25.
Как показали Дэвид и Мелба Колдуэллы, дельфины, подобно людям, способны опознавать сородичей по голосу — независимо от того, что конкретно тот говорит (или, в случае дельфинов, свистит) 26. И у китообразных, и у певчих птиц, как и у человека, вокализация произвольна. Она независима от лимбической системы (подкорковых структур), не свидетельствует об эмоциональном возбуждении и осуществляется скелетной мускулатурой27. Органы же звукопроизводства при этом совершенно разные: у человека это прежде всего гортань с голосовыми связками, у дельфинов и китов — назальные мешки, у птиц — сиринкс (иначе “нижняя гортань”, расположенная не в начале трахеи, как гортань млекопитающих, а в том месте, где от трахеи ответвляются бронхи; эволюционное происхождение сиринкса и гортани млекопитающих различно).