простираться так далеко, чтобы затрагивать конечность или бесконечность пространства?[417]».
Чтобы получить ответ, надо было рассмотреть вопрос в чистом виде, т. е. отрешиться от привилегированных систем отсчёта — избавиться от сопутствия их материи, а проще всего — совсем изгнать из фридмановских моделей материю. ОТО допускает такие модели (называемые
Для случая непустых фридмановских моделей результат А.Л. Зельманова принципиально остаётся тем же, поскольку для них сохраняется понятие пространства. Ставить же вопрос о конечности и бесконечности пространства анизотропной неоднородной Вселенной, вообще говоря, невозможно, потому что теряет смысл сам объект, пространство. Вывод таков: в тех случаях, когда пространственный объём Вселенной существует как понятие, то его конечность или бесконечность относительна, т. е. зависит от наблюдателя.
Зависимость рассматриваемых по отдельности пространства и времени от движения системы отсчёта естественным образом порождает и другой вопрос: не простирается ли она столь далеко, чтобы затрагивать конечность и бесконечность времени? И в этом случае вопрос также имеет смысл лишь там, где само понятие времени имеет смысл. Так как Вселенная как целое не могла возникнуть во времени (геометрическом), вопрос можно ставить лишь для отдельных её объектов (подсистем). Для отдельного объекта всегда можно ввести преимущественную сопутствующую ему систему отсчёта, геометрическое время которой называется
Таким образом, с точки зрения удалённого наблюдателя, гравитационный коллапс приводит к возникновению как бы навек «застывшего» тела, от которого не приходят в окружающее пространство никакие сигналы. Оно «застыло» не потому, что находится в равновесии (ибо равновесия нет), но потому, что, с точки зрения внешнего наблюдателя, на сингулярной сфере «застыло» (остановилось) время. Действительно, в системе отсчёта внешнего наблюдателя собственное время наблюдателя, пересекающего сингулярную сферу Шварцшильда, выражается величиной
? = ?vg00dt = ?v(1 — r/rg)dt
откуда видно, что на сингулярной сфере (r = rg) собственное время обращается в нуль.
Предсказание описанного Оппенгеймером и Снайдером объекта, как видим, опять было чисто умозрительным, т. е. никак не было продиктовано предметным познанием. Ни в каком предшествующем знании не могло быть объекта такого рода, потому что он должен был быть невидимым: световой сигнал не может выйти вовне из-под сингулярной сферы. Но опять-таки модель строилась на чисто гравитационном взаимодействии, а в нём в равной степени участвуют как видимые, так и невидимые тела. В 30-х годах прошлого века едва появились только первые наблюдательные догадки о возможном существовании скрытых масс, оказывающих гравитационное действие на движение наблюдаемых небесных тел. И лишь впоследствии, когда выяснилось, что звёзды достаточно больших масс действительно могут сжиматься неограниченно, рассматриваемым гипотетическим объектам был присвоен статус реальности — как одного вида тёмной материи, получившего название
Идея относительности бесконечности закономерно пришла на смену антиномии Канта, когда методология физики в XX веке решительно отказалась от позитивистского предметного знания и перешла на почву онтологии. В отличие от антиномии Канта, отнесённость бесконечности к наблюдателю не означает противоречия для разума в области чисто метафизического мышления. Разум не приходит к противоречию с самим собой, если мир понимать не опытно, а онтологически.
В соответствии с дорелятивистским представлением, мир не может быть мыслимым вне пространства: «миропонимание — это пространствопонимание» (П.А. Флоренский). ОТО демонстрирует, что это не так; она заменяет «мир пространства» на мир пространства-времени. Мир пространства-времени ОТО — это основной абсолют теории, так как его свойства инвариантны относительно выбора наблюдателя. В платоновской терминологии, он есть
Возникает вопрос о природе этих «теней» — пространства и времени. Как и чем они порождаются?
Уже Платон, который впервые ввёл в античную науку понятие геометрического пространства, не придавал этому пространству какого-либо субстанциального значения. У него пространство не относится к миру вечных идей, но не относится и к миру «природы» — вечно движущемуся, воспринимаемому «посредством мнения, соединённого с ощущением». Его восприятие Платон уподобляет сновидению: оно «не находится ни на земле, ни на небесах, будто бы не существует[421]». В XIX веке Георг Кантор попытался построить другие «небеса», в которых нашлось место для геометрических пространств. Это было исчисление бесконечностей Г. Кантора, который решил сделать бесконечность научным (математическим) понятием, расширив для этой цели само понимание математики. Г. Кантор поставил перед собой задачу, которую не смогли решить пифагорейцы, — построить мир на основе чисел, только под числами он понимал нечто более общее: не только конечные числа, но и трансфиниты. Для этого требовалось сложить актуальную бесконечность из более элементарных множеств, допускавших интуитивное постижение.
Попытка не удалась не только Кантору, но и ни одному из крупнейших математиков XX века, которые пытались разрешить загадку континуума, «уничтожив» в его описании актуальную бесконечность. Все их усилия кончались крахом: актуальная бесконечность не хочет покидать континуум. Не меньшее разочарование испытывали и физики, видя, до какой степени затруднительно обосновать непрерывность в описании природы. Именно в этом смысле Э. Шредингер высказался о том, что все попытки использования старого, привычного понятия континуума для описания свойств микромира оказались тщетными и окончились провалом. Причину Шредингер видел в том, что этот старый привычный континуум вдруг оказался пугающе сложным и концептуально непонятным. По его словам, само понятие дискретности в мире