1) если на свете действительно существует некто, кроме Траляля и Труляля, неотличимый от них по внешнему виду, то его зовут Трулюлю;
2) если такой индивид существует, то он всегда лжет.
Должен заметить, что второе допущение не обязательно для решения первой загадки, но необходимо для решения двух следующих загадок.
63.
Алиса встретила в лесу одного из братцев. По крайней мере внешне он выглядел так, словно был Траляля или Труляля. Алиса рассказала ему историю, которую поведал ей Шалтай-Болтай, и спросила: «А кто вы такой?» На что последовал загадочный ответ: «Я либо Труляля, либо Траляля, и сегодня один из дней, когда я лгу».
Спрашивается, существует ли Трулюлю в действительности или же его выдумал Шалтай-Болтай?
64.
Согласно этой версии, Алиса встретила двух братцев (по крайней мере встреченные ею два человечка по внешнему виду были неотличимы от Траляля и Труляля). Она спросила у первого: «Кто вы?» — и получила следующие ответы:
Первый. Я Трулюлю.
Второй. Это он!
Какие выводы вы можете сделать на основании этой версии?
65.
Согласно этой версии, Алиса встретила одного из братцев. Он заявил: «Сегодня один из дней недели, когда я лгу». Какие выводы вы можете сделать на основании этой версии?
66.
Согласно этой версии, Алиса встретила в будний день (не в субботу и не в воскресенье) двух братцев (по крайней мере по внешнему виду двух человечков нельзя было отличить от Траляля и Труляля) и спросила: «Существует ли Трулюлю в действительности?» Ей ответили следующее:
Первый. Трулюлю существует.
Второй. Я существую.
Какие выводы вы можете сделать на основании этой версии?
Как же обстоит дело в действительности? Существует Трулюлю или не существует? Я изложил вам четыре противоречивые версии событий, разыгравшихся в Лесу Забывчивости. Откуда они взялись? Должен признаться, что я их не выдумал. Все четыре истории я услышал из уст Бармаглота. Разговор между Алисой и Шалтаем-Болтаем действительно происходил — об этом мне рассказала Алиса, а она всегда говорит только правду. Но четыре версии событий, разыгравшихся после разговора, мне сообщил Бармаглот. Он лжет по тем же дням недели, что и Лев (понедельник вторник, среда), а свои истории рассказывал мне четыре дня подряд. (Отчетливо помню, что ни один из этих четырех дней не приходился на воскресенье и на субботу. Дело в том, что я изрядный лежебока и по субботам и воскресеньям люблю поспать с утра до вечера.) Все истории Бармаглот рассказал мне в том же порядке, в каком я поведал их читателям. Располагая столь обширной информацией, читатель без труда установит, существует ли в действительности Трулюлю или Шалтай-Болтай солгал Алисе. Знает ли Алиса, существует или не существует Трулюлю в действительности?
Решения
47. Лев мог сказать, что он лгал накануне, только в понедельник и в четверг. Единорог мог сказать, что он лгал накануне, только в четверг и в воскресенье. Следовательно, они оба могли утверждать, что лгали накануне, только в четверг.
48. Из первого высказывания Льва следует, что Алиса встретила его в понедельник или в четверг. Из второго высказывания следует, что день встречи не четверг. Следовательно, встреча произошла в понедельник.
49. Такие утверждения Лев не может высказать ни в один из дней недели. Первое утверждение он мог бы высказать только в понедельник и в четверг, второе — только в среду и в воскресенье. Следовательно, оба утверждения он не мог бы высказать ни в один из дней недели.
50. Ситуация в этой задаче весьма отлична от той, с которой мы встретились в предыдущей задаче. На этом примере отчетливо видно различие между двумя отдельными высказываниями и одним сложным высказыванием — их конъюнкцией. Действительно, если заданы любые два высказывания X, Y, то из истинности одного сложного высказывания «X и Y» следует, что истинны оба высказывания X, Y. Если же конъюнкция «X и Y» ложна, то ложно по крайней мере одно из высказываний X, Y.
После этих предварительных замечаний перейдем к решению задачи. Единственный день недели, когда высказывания Льва «Я лгал вчера» и «Я буду лгать завтра» могли бы быть истинными, — вторник (поскольку он и только он попадает между двумя днями, когда Лев лжет). Следовательно, день, когда Лев высказал свое утверждение, не мог быть вторником, так как по вторникам его утверждение истинно, а Лев не высказывает истинных утверждений по вторникам. А раз это было не во вторник, то высказывание Льва ложно, то есть в тот день Лев лжет. Таким образом, приведенное в задаче сложное высказывание Лев мог произнести либо в понедельник, либо в среду.
51. Если первое высказывание истинно, то первого братца зовут Траляля. Тогда второго братца зовут Труляля, и второе высказывание также истинно. Если первое высказывание ложно, то первого братца зовут Труляля, второго — Траляля, и, следовательно, второе высказывание также ложно. Таким образом, либо оба высказывания истинны, либо оба высказывания ложны. С другой стороны, оба высказывания не могут быть ложными, так как Траляля и Труляля никогда не лгут в один и тот же день. Следовательно, оба высказывания должны быть истинными. Значит, первого братца зовут Траляля, а второго — Труляля. Алиса встретила их в воскресенье.
52. Несмотря на большое внешнее сходство, эта задача весьма отличается от предыдущей. Второе высказывание заведомо истинно. Так как встреча происходила на другой день после встречи, описанной в предыдущей задаче, то она пришлась на будний день. Следовательно, оба высказывания не могут быть истинными, из чего мы заключаем, что второе высказывание должно быть ложным. Таким образом, первого братца зовут Труляля, а второго — Траляля.
53. Первый ответ заведомо был ложным. Следовательно, встреча Алисы с двумя братцами происходила в будний день. Но тогда другой братец должен был дать правдивый ответ и поэтому сказал: «Нет».
54. Высказывание (2) первого братца заведомо ложно, поэтому его высказывание (1) также ложно (поскольку было сделано в один день). Следовательно, первый братец не лжет по субботам. Отсюда мы заключаем, что второй братец по субботам лжет. В день встречи второй братец говорит правду (так как первый братец лжет), поэтому встреча могла произойти в понедельник, вторник или среду. Единственный из этих дней, когда он может, не погрешив против истины, заявить, что будет лгать завтра, — это среда. Следовательно, дело было в среду.
55. Высказывание братца заведомо ложно (если бы оно было истинно, то братец лгал бы в день встречи, и мы пришли бы к противоречию). Следовательно, по крайней мере одно из двух высказываний «Я лгу сегодня», «Меня зовут Труляля» должно быть ложным. Первое высказывание («Я лгу сегодня») истинно, поэтому ложным должно быть второе высказывание. Итак, Алисе встретился Траляля.
56. Можно. Если бы встретившийся Алисе братец в тот день лгал, то первое высказывание в дизъюнкции было бы истинным, вследствие чего и все сложное высказывание также было бы истинным, и мы пришли бы к противоречию. Следовательно, в день встречи с Алисой братец говорил правду, и его высказывание истинно: либо он лжет, либо его зовут Труляля. Так как в день встречи братец не лгал, то его звали Труляля.