39. Прежде всего заметим, что A не может быть рыцарем, потому что рыцарь не назвал бы себя нормальным человеком. Следовательно, A — либо лжец, либо нормальный человек. Тогда истинно высказывание островитянина B. Значит, B — либо рыцарь, либо нормальный человек. Но B не может быть нормальным человеком (так как A — нормальный человек), поэтому B — рыцарь, а C — лжец. Но лжец не может сказать о себе, что он не нормальный человек (так как любой лжец — не нормальный человек), и мы приходим к противоречию. Итак, A не может быть нормальным человеком. Следовательно, A — лжец. Это означает, что высказывание островитянина B ложно, в силу чего B должен быть нормальным человеком (лжецом он быть не может, так как лжец — островитянин A). Итак, A — лжец, а B — нормальный человек. Отсюда мы заключаем, что C — рыцарь.
40. Эта задача обладает интересной особенностью. Условия ее не позволяют установить, кто из двух островитян говорит правду, не будучи рыцарем: A или B. Мы можем доказать более слабое утверждение: по крайней мере один из двух островитян A и B говорит правду, не будучи рыцарем.
Островитянин A либо говорит правду, либо не говорит правду. Докажем два утверждения: 1) если A говорит правду, то он говорит правду, не будучи рыцарем; 2) если A лжет, то B говорит правду, не будучи рыцарем.
1) Предположим, что A говорит правду. Тогда B — рыцарь и, следовательно, говорит правду. Значит, A — не рыцарь. Таким образом, если A говорит правду, то A — лицо, говорящее правду, не будучи рыцарем.
2) Предположим, что A не говорит правду. Тогда B — не рыцарь. Но B должен говорить правду, так как A не может быть рыцарем (ведь A не говорит правду). Следовательно, в этом случае B говорит правду, не будучи рыцарем.
41. Докажем, что если B говорит правду, не будучи рыцарем, и если B не говорит правду, то A лжет, не будучи лжецом.
1) Предположим, что B говорит правду. Тогда A — лжец и, следовательно, заведомо не говорит правду. Отсюда мы заключаем, что B — не рыцарь. Таким образом, в этом случае B говорит правду, не будучи рыцарем.
2) Предположим, что B не говорит правду. Тогда A не лжет. Но A заведомо лжет, когда говорит о B, так как B не может быть рыцарем, если он не говорит правду. Таким образом, в этом случае A лжет, не будучи лжецом.
42. Прежде всего заметим, что A не может быть рыцарем, так как если бы A был рыцарем, то его высказывание было бы ложным (рыцарь как особа высшего ранга не может быть по рангу ниже B). Предположим, что A — лжец. Тогда его высказывание ложно. Следовательно, A по рангу не может быть ниже, чем B. Значит, B также должен быть лжецом (так как если бы B не был лжецом, то A был бы особой более высокого ранга, чем B). Но это невозможно, так как высказывание B противоположно высказыванию A, а два противоположных высказывания не могут быть истинными одновременно. Следовательно, предположение, что A — лжец, приводит к противоречию. Значит, A не лжец, но тогда A должен быть нормальным человеком.
А что можно сказать о B? Если бы он был рыцарем, то A (будучи нормальным человеком) был бы особой более низкого ранга, чем B. Тогда высказывание A было бы истинным, из чего следовало бы, что высказывание B ложно. Таким образом, рыцарь высказал бы ложное утверждение, что невозможно. Значит, B не рыцарь. Предположим, что B был бы лжецом. Тогда высказывание A было бы ложным, из чего следовало бы, что высказывание B истинно. Таким образом, лжец высказал бы истинное утверждение, что невозможно. Следовательно, B не может быть не только рыцарем, но и лжецом. Значит, B — нормальный человек.
Итак, A и B — нормальные люди. Высказывание A ложно, высказывание B истинно. Тем самым задача полностью решена.
43.
44. Мистер A не может быть лжецом, так как тогда его жена была бы рыцарем и, следовательно, не могла бы быть нормальным человеком, а это означало бы, что высказывание мистера A было бы истинно. По аналогичной причине миссис A не может быть и лжецом. Следовательно, ни мистер A, ни миссис A не могут быть и рыцарями (в противном случае второй супруг был бы лжецом). Значит, мистер A и миссис A — нормальные люди (и оба лгут).
45. Совпадает. Почему?
46. Оказывается, что все четверо — нормальные люди, а все три высказывания ложны.
Прежде всего заметим, что миссис B должна быть нормальным человеком, так как если бы она была рыцарем, то ее муж был бы лжецом и, назвав его рыцарем, она солгала бы. Если бы миссис B была лжецом, то ее муж был бы рыцарем, но Тогда ее высказывание о своем муже было бы истинным. Следовательно, миссис B — нормальный человек, тогда мистер B также нормальный человек. Это означает, что мистер A и миссис A оба лгали. Отсюда мы заключаем, что ни один из супругов A не рыцарь и что они не могут быть и лжецами. Следовательно, супруги A — нормальные люди.
IV. Алиса в Лесу Забывчивости
А. Лев и Единорог
Когда Алиса вошла в Лес Забывчивости, она забыла не все, а лишь кое-что. Она часто забывала, как ее зовут, но особенно ей легко удавалось забывать дни недели. Лев и Единорог частенько наведывались в Лес Забывчивости. Странные это были существа. Лев лгал по понедельникам, вторникам и средам и говорил правду во все остальные дни недели. Единорог же вел себя иначе: он лгал по четвергам, пятницам и субботам и говорил правду во все остальные дни недели.
47.
Однажды Алиса повстречала Льва и Единорога, отдыхавших под деревом. Те высказали следующие утверждения.
Лев. Вчера был один из дней, когда я лгу.
Единорог. Вчера был один из дней, когда я тоже лгу.