вызывает у некоторых философов самые решительные возражения (см., в частности, задачу 244 из гл. 14). Факт 2 иногда формулируют так: «Истинное высказывание следует из чего угодно».

Таблица истинности

Если заданы два высказывания P, Q, то их значения истинности могут распределяться четырьмя возможными способами: 1) P и Q истинны; 2) P истинно, Q ложно; 3) P ложно, Q истинно; 4) P и Q ложны.

В каждом конкретном случае мы должны иметь дело с одним и только с одним из этих четырех вариантов. Рассмотрим теперь высказывание P ? Q. Можно ли определить, в каких случаях оно истинно и в каких — ложно? Можно, если воспользоваться следующими соображениями.

Случай 1: P и Q истинны. Так как Q истинно, то P ? Q истинно (факт 2).

Случай 2: P истинно, Q ложно. Тогда P ? Q ложно (факт 3).

Случай 3: P ложно, Q истинно. Тогда P ? Q истинно (факт 1 или факт 2).

Случай 4: P ложно, Q ложно. Тогда P ? Q истинно (факт 1).

Все четыре случая мы сведем в одну таблицу, называемую таблицей истинности для импликации:

(В «нормальной» таблице истинности вместо букв И и Л используют сокращения 0 — ложно и 1 — истинно — SStas)

Три буквы И, И, И (истинно, истинно, истинно) в первой строке означают, что когда P истинно и Q истинно, высказывание P ? Q истинно. Буквы И, Л, Л во второй строке означают, что если P истинно, Q ложно, то P ? Q истинно, а буквы Л, Л, И в четвертой строке — что если P ложно и Q ложно, то P ? Q истинно.

Заметим, что P ? Q истинно в трех из четырех случаев и ложно только во втором случае.

Еще одно свойство импликации. Импликация обладает еще одним важным свойством. Чтобы доказать истинность высказывания «Если P, то Q», достаточно, приняв высказывание P за посылку, убедиться в том, что из него следует высказывание Q. Иначе говоря, если из посылки P следует заключение Q, то высказывание «Если, то Q» истинно.

В дальнейшем мы будем ссылаться на это свойство импликации, как на факт 4.

P Q P?Q
1 И И И
2 И Л Л
3 Л И И
4 Л Л И

А. Применение импликации к рыцарям и лжецам

109. О каждом из двух людей A и B известно, что он либо рыцарь, либо лжец. Предположим, что A высказывает следующее утверждение: «Если я рыцарь, то B — рыцарь».

Можно ли определить, кто такие A и B: кто из них рыцарь и кто лжец?

110. У A спрашивают: «Вы рыцарь?» Тот отвечает: «Если я рыцарь, то съем собственную шляпу».

Докажите, что A придется съесть свою шляпу.

111. A утверждает: «Если я рыцарь, то дважды два — четыре». Кто такой A: рыцарь или лжец?

112. A заявляет: «Если я рыцарь, то дважды два — пять». Кто, по-вашему, A: рыцарь или лжец?

113. Относительно A и B известно, что каждый из них либо рыцарь, либо лжец. А заявляет: «Если B — рыцарь, то я лжец». Кто A и кто B?

114. Двух человек X и Y судят за участие в ограблении, A и B выступают на суде в качестве свидетелей. Относительно A и B известно, что каждый из них либо рыцарь, либо лжец. В ходе судебного заседания свидетели выступили со следующими заявлениями:

A: Если X виновен, то Y виновен.

B: Либо X не виновен, либо Y виновен.

Можно ли утверждать, что A и B однотипны? (Напомним, что двух обитателей острова рыцарей и лжецов мы называем однотипными, если они оба рыцари либо оба лжецы.)

115.

У трех обитателей A, B и C острова рыцарей и лжецов взяли интервью, в ходе которого они высказали следующие утверждения:

A: B — рыцарь.

B: Если A — рыцарь, то C — рыцарь.

Можно ли определить, кто из A, B и C рыцарь и кто лжец?

Б. Любовь и логика

116.

Предположим, что следующие два высказывания истинны:

1) Я люблю Бетти или я люблю Джейн.

2) Если я люблю Бетти, то я люблю Джейн.

Следует ли из них непременно, что я люблю Бетти? Следует ли из них непременно, что я люблю Джейн?

117.

Предположим, что у меня спрашивают: «Верно ли, что если вы любите Бетти, то вы также любите Джейн?» Я отвечаю: «Если это верно, то я люблю Бетти».

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату