C: Я не нормальный человек.
Кто такие A, B и C?
40.
Предлагаю вашему вниманию необычную задачу. Двое людей A и B, о которых известно, что каждый из них либо рыцарь, либо лжец, либо нормальный человек, высказывают следующие утверждения:
A: B — рыцарь.
B: A — не рыцарь.
Докажите, что по крайней мере один из них говорит правду, но это не рыцарь.
41.
На этот раз A и B высказывают следующие утверждения:
A: B — рыцарь.
B: A — лжец.
Докажите, что либо один из них говорит правду, но это не рыцарь, либо один из них лжет, но это не лжец.
42.
На одном острове, где живут рыцари, лжецы и нормальные люди, лжецы считаются особами низшего ранга, нормальные люди — особами среднего ранга и рыцари — особами высшего ранга.
Мне очень нравится следующая задача. Двое людей A и B, о каждом из которых известно, что он либо лжец, либо нормальный человек, высказывают утверждения:
A: По рангу я ниже, чем B.
B: Не правда!
Можно ли определить ранг A или B? Можно ли установить, истинно или ложно каждое из этих двух утверждений?
43.
Трое людей A, B и C, %один из которых лжец, один — рыцарь, и один — нормальный человек% (на самом деле здесь стояло следущее: «…каждый из которых либо рыцарь, либо нормальный человек, либо лжец» Но в этом случае решение Смаллиана неверно, поэтому я слегка изменил условие — SStas), высказывают следующие утверждения:
A: B по рангу выше, чем C.
B: C по рангу выше, чем A.
Затем у C спрашивают: «Кто старше по рангу — A или B?» Что ответит C?
В. Остров Бахава
На острове Бахава женщины во всем пользуются равными правами с мужчинами, поэтому женщин, как и мужчин, называют рыцарями, лжецами и нормальными людьми. В глубокой древности одна из правительниц острова Бахава по собственной прихоти издала указ, по которому рыцарю разрешалось вступать в брак только с лжецом, а лжецу — только с рыцарем (следовательно, нормальный человек мог вступать в брак только с нормальным человеком). С тех, пор в любой супружеской чете на острове Бахава либо оба супруга — нормальные люди, либо один из супругов — рыцарь, а другой — лжец.
Следующие три истории происходят на острове Бахава.
44.
Рассмотрим сначала супружескую чету — мистера и миссис A. Они высказывают следующие утверждения:
Мистер A: Моя жена — не нормальный человек.
Миссис A: Мой муж — не нормальный человек.
Кто такой мистер A и кто такая миссис A — рыцарь, лжец или нормальный человек?
45.
Предположим, что мистер и миссис A высказали следующие утверждения:
Мистер A: Моя жена — нормальный человек.
Миссис A: Мой муж — нормальный человек.
Совпадает ли ответ этой задачи с ответом предыдущей задачи?
46.
В этой задаче речь пойдет о двух супружеских парах с острова Бахава: мистере и миссис A, мистере и миссис B. При опросе трое из них дали следующие показания.
Мистер A: Мистер B — рыцарь.
Миссис A: Мой муж прав: мистер B — рыцарь.
Миссис B: Что верно, то верно. Мой муж действительно рыцарь.
Кто каждый из этих четырех людей — рыцарь, лжец или нормальный человек и какие из трех высказываний истинны?
Решения
26. Ни рыцарь, ни лжец не могут сказать: «Я лжец» (высказав подобное утверждение, рыцарь солгал бы, а лжец изрек бы истину). Следовательно, A, кем бы он ни был, не мог сказать о себе, что он лжец. Поэтому B, утверждая, будто A назвал себя лжецом, заведомо лгал. Значит, B — лжец. А так как C сказал, что B лгал, когда тот действительно лгал, то C изрек истину. Следовательно, C — рыцарь. Таким образом, B — лжец, а C — рыцарь. (Установить, кем был A, не представляется возможным.)
27. Ответ в этой задаче такой же, как в предыдущей, но ход рассуждений несколько иной.
Прежде всего заметим, что B и C не могут быть оба рыцарями или оба лжецами, так как B противоречит C. Следовательно, B и C не могут быть оба рыцарями или оба лжецами: один из них рыцарь, а другой — лжец. Если бы A был рыцарем, то всего было бы два рыцаря. Следовательно, A не лгал и сказал, что среди троих персонажей рыцарь лишь один. С другой стороны, если бы A был лжецом, то утверждение о том, что из трех островитян A, B и C рыцарь лишь один, было бы истинным. Но тогда A, будучи лжецом, не мог бы высказать это истинное утверждение. Следовательно, на вопрос незнакомца A не мог ответить: «Среди нас один рыцарь». Следовательно, B неверно передал высказывание A, из чего мы заключаем, что B — лжец, а C — рыцарь.
28. Предположим, что A — лжец. Если бы это было так, то утверждение «По крайней мере один из нас лжец» было бы ложным (так как лжецы высказывают ложные утверждения). Следовательно, в этом случае A и B были бы рыцарями. Таким образом, если бы A был лжецом, то он не был бы лжецом, что невозможно. Отсюда мы заключаем, что A не лжец, он рыцарь. Но тогда высказанное A утверждение должно быть истинным. Поэтому по крайней мере один из двух персонажей A и B в действительности лжец. Так как A — рыцарь, то лжецом должен быть B. Итак, A — рыцарь, а B — лжец.
29. Эта задача может служить неплохим введением в логику дизъюнкции. Пусть заданы два высказывания p, q. Высказывание «или p, или q» истинно, если истинно по крайней мере одно из высказываний p, q (или оба). Высказывание «или p, или q» ложно, если ложны оба высказывания p, q. Например, если бы я в хорошую погоду сказал: «Либо дождик, либо снег», то мое высказывание было бы ложным, потому что ложны обе его части: и та, в которой говорится о дожде, и та, в которой говорится о снеге.
Именно так принято понимать связку «или» в логике. Именно так мы будем понимать ее на протяжении всей нашей книги. В повседневной жизни союз «или» иногда интерпретируют так же, как в логике (то есть допускают возможность выполнения обеих альтернатив), а иногда понимают в так называемом «исключительном» смысле (то есть считают, что выполняется одна и только одна из альтернатив, но не