или

m? ? l? = а? ? b?. (1)

Точно так же приравняем выражения для отрезка AP?, полученные из треугольников MAP и ABP:

(m + l)? ? а? = b? + AB?.

Вспомнив, что по условию AB? = 2ab, получим (m + l)? = а? + 2ab + b?, т. е.

m + l = а + b. (2)

Разделив почленно равенство (1) на равенство (2), получим

m ? l = а ? b, (3)

а решая систему из уравнений (2) и (3), найдем m = а, b = l, что и требовалось доказать.

3.7. Обозначим через PQ (рис. P.3.7) прямую, по которой пересекаются грани AOD и BOC, а через RS — прямую, по которой пересекаются грани AOB и DOC. Прямые PQ и RS определяют плоскость P. Через произвольную точку M на АО проведем плоскость, параллельную плоскости P. Фигура MNKL, получившаяся в сечении, будет параллелограммом.

B самом деле, MN || PQ и LK || PQ, a ML || RS и NK || RS, как прямые, получившиеся в результате пересечения двух параллельных плоскостей третьей. Следовательно, MN || LK и ML || NK, что и требовалось доказать.

3.8. Продолжим ED и CB (рис. P.3.8) до пересечения в точке F и проведем AF — ребро двугранного угла, косинус которого нужно найти.

Так как EC = 2DB (по условию), то DB — средняя линия в треугольнике EFC. Поэтому FB = BC = а. Поскольку BA = а, то треугольник FBA равнобедренный. Сумма его углов, прилежавших к FA, равна 60°, а угол BAF равен 30°.

Мы убедились в том, что угол CAF прямой, а следовательно, линейный угол EAC измеряет искомый двугранный угол. Теперь остаются простые вычисления:

По теореме о трех перпендикулярах отрезки EA и FA взаимно перпендикулярны; поэтому площадь треугольника EAF равна ?EA · AF, где AF = аv3 . Итак, площадь треугольника AFE равна 3a?/2, и вследствие того, что FD = DE, площадь треугольника DEA в два раза меньше.

Ответ. 3a?/2, 1/v3.

3.9. Обозначим высоту SO пирамиды через H. Предположим, что вершина пирамиды спроецируется в точку O, лежащую внутри треугольника ABC, и пусть углы SDOSEO и SFO измеряют данные двугранные углы (рис. P.3.9, а).

Рассмотрим отдельно треугольник ABC (рис. P.3.9, б). Площадь его, с одной стороны, равна сумме площадей треугольников AOBBOC и COA, а с другой стороны, равна a?v3/4. Поэтому

?a(OF + OD + OE) = a?v3/4, т.е. OF + OD + OE = av3/2.

Каждый из отрезков OFOD и OE можно выразить через H:

OD = H ctg ?, OE = H ctg ?, OF = H ctg ?. Следовательно,

H = av3/2(ctg ? + ctg ? + ctg ?) .

Если точка О лежит вне треугольника ABC, то один из данных двугранных углов тупой (на рис. P.3.9, в угол при BC, т. е. ?). Следовательно, его котангенс будет отрицательным. Это соответствует тому факту, что площадь треугольника ABC равна сумме площадей треугольников АВО и АОС за вычетом площади треугольника ВОС. Таким образом, результат останется таким же, как в случае, когда О лежит внутри треугольника ABC.

Наконец, как легко убедиться, полученная формула дает верный результат и в том случае, когда точка О лежит на стороне треугольника ABC или совпадает с его вершиной. (Соответствующие котангенсы обращаются в нуль.)

Ответ. V = a?/8(ctg ? + ctg ? + ctg ?).

3.10. Так как AC = BC по условию (рис. P.3.10), то прямоугольные треугольники ADC и BDC равны и, следовательно, AD = BD. Треугольник ADB — равнобедренный, его медиана DE, проведенная из вершины D, будет одновременно и высотой. Таким образом, мы доказали, что двугранный угол при ребре AB измеряется линейным углом DEC, который обозначим через x.

Высота DO треугольника EDC будет высотой пирамиды. B самом деле, ребро AB перпендикулярно к ED и EP, т. е. к плоскости EDC. Отрезок DO, следовательно, перпендикулярен не только к EC, но и к

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату