в двух точках С и С1 (это происходит при b > |с sin ? ? а sin ?|), то задача имеет два различных решения: ABCD и ABC1D1 (CD и C1D1 || EF), причем один четырехугольник будет самопересекающимся. При b = |с sin ? ? а sin ?| решение единственно, а при b < |с sin ? ? а sin ?| искомый четырехугольник не существует.
2.12. На отрезке ОМ (рис. P.2.12) строим треугольник OCM, сторона OC которого равна 2R, а сторона CM равна R. Точку пересечения OC с окружностью обозначим через B. Секущая AM — искомая.
Задача имеет два решения, если MO < 3R, одно решение, если MO = 3R, и не имеет решений, если MO > 3R.
2.13. Соединим центры О и О1 данных окружностей и построим на ОО1, как на гипотенузе, прямоугольный треугольник ОЕО1, один из катетов которого (EO1) равен а/2. Через точку M пересечения окружностей, лежащую по ту же сторону от ОО1 что и построенный прямоугольный треугольник, проводим прямую, параллельную катету длины а/2. Отрезок AB (рис. P.2.13) будет искомым.
Задача имеет четыре решения, если а/2 < ОО1, два решения, если а/2 = ОО1, и не имеет решений, если а/2 > ОО1.
2.14. Проводим через точку M окружность, концентрическую данной. На этой окружности строим хорду длины а, проходящую через точку M. Задача может иметь два или одно решение (а < 2МО), а может и не иметь решения вовсе (а > 2МО).
2.15. Так как дуга AmB фиксирована, то известен и вписанный угол АМВ. Обозначим его через ?. Если отрезок PQ (рис. P.2.15) перенести параллельно в отрезок В1В, то из точки P отрезок АВ1 будет виден под углом ?. Таким образом, строим отрезок В1В, равный а и параллельный CD; на отрезке АВ1 строим сегмент, вмещающий угол ?, где ? — угол, измеряемый дугой AmB данной окружности. Искомая точка P есть точка пересечения или касания дуги этого сегмента с прямой CD.
Задача может иметь два решения (сегмент, опирающийся на АВ1, пересекает хорду CD), одно решение (этот сегмент касается хорды) и может не иметь решений вовсе (точек пересечения нет).
2.16. Пусть отрезок FD делится точкой M пополам (рис. P.2.16). Отразим точку B от точки M. Получим точку E. Отрезки FD и ЕВ можно рассматривать как диагонали параллелограмма.
Заметим также, что угол АСВ известен, так как точки А и B зафиксированы на окружности; обозначим его через ?. Угол АFЕ равен ? ? ?. Следовательно, точка F обладает еще и тем свойством, что из нее отрезок AE виден под данным углом ? ? ?.
Итак, строим точку E, а на отрезке AE — сегмент, вмещающий угол ? ? ?. На пересечении дуги этого сегмента с данной прямой получим точку F.
Задача имеет единственное решение, если точки А и B лежат по одну сторону от данной прямой, и не имеет решений в остальных случаях.
2.17. Пусть прямая, проведенная через точки А и B, пересекает прямую PQ в точке С (рис. P.2.17), и пусть О — центр искомой окружности. Тогда СА · СВ = CD?. Отрезки СА и СВ известны, отрезок CD — их среднее геометрическое и строится стандартным образом.
Если точки А и B лежат по одну сторону от PQ, то задача имеет два решения (отрезок CD можно отложить вправо и влево от точки С). Если AB и PQ параллельны, то задача имеет единственное решение, которое очевидно, но не может быть получено описанным способом. Когда точки А и P лежат по разные стороны PQ, задача не имеет решения.
2.18. Отрезки МВ и МА или их продолжения пересекают данную окружность в точках С и D (рис. P.2.18), которые являются основаниями высот треугольника АМВ, опущенных из его вершин А и B. Отрезок МР, проведенный через точку P пересечения AC и BD, будет искомым перпендикуляром.
Задача имеет решение, если точка M не лежит на прямой AB.
2.19. Предыдущая задача позволяет построить некоторый перпендикуляр к диаметру AB, пересекающий данную окружность в точках, которые мы обозначим буквами С и D (рис. P.2.19). Проведем прямую СМ; она пересечет диаметр AB (или его продолжение) в точке E. Проведем ED. B пересечении ED и данной окружности получим точку F; MF — искомый перпендикуляр.