числа.

9.8.  а — действительное число.

9.9.  а — действительное число.

9.10. Найдите действительные решения уравнения

|x? ? 3 · x/2 ? 1| = ?x? ? 4x + ?

и определите, при каких значениях ? оно имеет единственное[6] действительное решение.

9.11. Решите систему

9.12. Найдите все действительные значения k, при которых решение системы

удовлетворяет условию: x > 1/k, у > 0.

9.13. В области действительных чисел решите систему

9.14. При каких значениях а система

имеет действительные решения? Найдите эти решения.

Решите системы:

9.15.

9.16.

9.17.

9.18.

9.19. Числа x, у и z удовлетворяют системе уравнений

где а, b, с не равны друг другу. Найдите x? + у? + z?.

Решите системы:

9.20.  

9.21.  

9.22.  

9.23.

9.24. Найдите все действительные решения системы

9.25. Найдите одно решение системы

Решите системы в области действительных чисел:

9.26.

9.27.

9.28.

9.29.  если а > b > 0 и а + b < 1.

9.30. Найдите все значения а и b, при которых система

имеет единственное решение (а, b, x, у — действительные числа).

9.31. Найдите все значения а, при которых система

имеет хотя бы одно решение и всякое ее решение удовлетворяет уравнению x + у = 0 (а, x, у — действительные числа).

9.32. Найдите все значения а, при которых система

имеет хотя бы одно решение для любого значения b (а, b, x, у — действительные числа).

9.33. Найдите все значения а и b, при которых система уравнений

имеет единственное решение (x, у, а, b — действительные числа, x > 0).

9.34. Решите систему

в области действительных чисел.

9.35. Решите уравнение

|6 ? |x ? 3| ? |x + 1|| ? аx ? 5а = 4

при всех действительных значениях параметра а.

9.36. При всех действительных а решите уравнение

9.37. Решите уравнение

9.38. Решите систему уравнений

Глава 10

Алгебраические неравенства 

О доказательстве неравенств. Доказать неравенство можно следующими способами, которые мы продемонстрируем на примере неравенства

1. От противного. Предположим противное:

Тогда

что невозможно.

2. По определению неравенства. Составим разность левой и правой частей и определим ее знак:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату