(
Ответ.
Пример 3. Решить неравенство
(3)
Данное неравенство не удовлетворяется в тех точках, где множители, стоящие в знаменателе, обращаются в нуль (
В точках же, в которых обращается в нуль числитель (
Множители (
(
Ответ.
Решите неравенства:
4. (5 ? 2х)(3 ? x)?(x ? 4)? < 0.
5.
Иррациональные неравенства. Решая уравнения, мы можем получать следствия данного уравнения и закончить решение проверкой, которая отсеивает посторонние корни. При решении же неравенств обычно получаются целые интервалы решений, что сильно усложняет проверку. Поэтому неравенства преобразовывают так, чтобы не нарушалась равносильность.
Начнем с иррациональных неравенств.
Пример 4. Решить неравенство
(4)
Нередко предлагают такое «решение»:
?55х + 250 < ?28
которое обосновывают следующим образом: «Левая часть меньше правой, но неотрицательна, так как мы имеем дело с арифметическим корнем. Следовательно, обе части данного неравенства неотрицательны, и его можно возвести в квадрат, не нарушая равносильности неравенства».
Чтобы убедиться, что неравенство решено неверно, подставим в данное неравенство, например,
Проанализируем ход приведенных здесь рассуждений. Они доказывают, что если неравенство (4) удовлетворяется при некоторых
Присутствие в неравенстве (4) квадратного корня накладывало на неизвестное определенные ограничения, которые оказались разрушенными после возведения неравенства (4) в квадрат.
Трехчлен
Чтобы подкоренное выражение оставалось неотрицательным, мы должны добавить к полученному после возведения в квадрат неравенству требование
Но и теперь еще не все. Достаточно подставить в исходное неравенство значение
Таким образом, после возведения данного неравенства в квадрат, мы должны позаботиться о сохранении всех ограничений, которые присутствуют в данном неравенстве. Неравенство (4) нужно было заменить системой
решая которую мы нашли бы, что
т. е.
В каждом из неравенств 6—9 освободитесь от иррациональности, не нарушая равносильности:
6.
7.
8.
9.
Показательные и логарифмические неравенства. При решении показательных и логарифмических неравенств пользуются следующими свойствами:
1. Неравенство
или системе неравенств
1а. Неравенство
или системе неравенств
2. Неравенство log
или системе неравенств