биссектрисе угла АОВ.
1.40. Из данного отношения площадей треугольников АВС и АDЕ, записанного в виде отношения произведений катетов, и из свойства произведения секущей на ее внешнюю часть найти отношение AE/AB.
1.41. Пусть О1 — центр окружности, радиус которой мы ищем, а О — центр данной окружности. В качестве связующего звена следует рассмотреть треугольник АОО1.
1.42. Нужно обозначить сторону квадрата через а и составить с помощью теоремы Пифагора биквадратное уравнение для определения а через R и r.
1.43. Вписанный в сегмент квадрат не должен нарушать симметрии сегмента. Поэтому он расположится так, как показано на рис. I.1.43. Обозначим половину стороны квадрата через x и составим уравнение относительно x.
1.44. Чтобы использовать условия задачи, нужно провести радиусы обеих окружностей в точки касания окружностей друг с другом и с нижним основанием. Центр меньшей окружности лежит на биссектрисе угла D.
1.45. Вначале для определенности удобно предположить, что точки P и Q лежат по разные стороны от CD. В этом случае диаметр CD разделит фигуры РQNМ и Р1Q1D на две части (рис. I.1.45). Нужно доказать, что площадь фигуры СQNK равна площади треугольника Q1OD. При этом полезен будет следующий факт. Если соединить точки Q и О, то, во-первых, угол QОС вдвое больше угла QDС, а во-вторых, треугольники ОQ1D и ОQD равновелики.
1.46. Соединим точки А и В, P и M и проведем радиусы из центра О в точки А и В (рис. I.1.46). Если длины отрезков AB, АР1 и ОА = R заданы и отрезок AB построен, то прямоугольный треугольник АРВ и положение точки О определяются однозначно. Следовательно, зная длины этих отрезков, можно вычислить длины интересующего нас отрезка РМ.
1.47. Отрезок, соединяющий центр окружности с серединой хорды, перпендикулярен к этой хорде. Зная, что хорда удалена от центра на 3R/5, легко выразить ее длину через R.
1.48. Использовать геометрически касание окружности О2 с окружностью О1 можно, соединив их центры (рис. I.1.48). Отрезок О2О1 пройдет через точку касания. Так как окружность О2 касается сторон угла ОАВ, то ее центр лежит на биссектрисе угла ОАВ.
1.49. Если в треугольнике АВС провести высоту АN (рис. I.1.49), то искомая площадь будет равна ?АN · BC. Соединив точки M и С, разобьем треугольник АВС на равнобедренный треугольник МСВ и треугольник АМС, у которого угол АМС легко выразить через ?.
1.50. Задача вычислительная. Нужно воспользоваться формулой Герона и выражением радиуса R через стороны треугольника и его площадь S, т. е. R = abc/4S . Стороны треугольника удобно обозначить: а, а ? d, а + d.
1.51. Проведите через точки P и Q прямые, параллельные AC. Первая будет средней линией треугольника АВС, вторая — средней линией треугольника с вершиной В, которому первая средняя линия служит основанием.
1.52. Соединим точки P и T. Данный треугольник разбивается на пять. Пусть QT = m, TL = n, QN = RL = а. Чтобы использовать условия задачи, можно записать соотношения площадей различных треугольников, образовавшихся из данного треугольника PQR.
1.53. Хорда MN — сторона правильного шестиугольника, вписанного в первую окружность, так как опирающийся на MN центральный угол ?МО1N = 60°. Чем является MN для второй окружности?
1.54. Для вписанного в окружность четырехугольника воспользоваться свойством, в силу которого сумма противоположных его углов равна 180°. Удобно обозначить стороны четырехугольника через а, b, с, d, начиная со стороны AB, а опирающиеся на них углы (проведите диагонали) через ?, ?, ?, ?.