(а, ?b), (?а, ?b), если а ? b.

6.16. Преобразовать исходное условие к виду 11(4x ? 1) = 69(у ? x) и воспользоваться тем, что x и у — натуральные числа.

K главе 7

7.1. Обе двойки представить как 3 ? 1 и сгруппировать члены так, чтобы в числителе можно было вынести за скобки n + 1, а в знаменателе n ? 1.

7.2. Прежде чем выполнять действия в скобках, следует упростить дроби, разложив числители и знаменатели на множители.

7.3. Перед нами сумма из трех слагаемых. Если первые два привести к общему знаменателю, то в числителе произойдут существенные упрощения.

7.4. Прежде чем производить вычитание, следует упростить дробь.

7.5. Если вынести за скобки х2m, то в скобках останется x в степени, содержащей множителями m ? n и 1/mn . Это упростит дальнейшие преобразования. (!)

7.6. Каждое из подкоренных выражений является полным квадратом.

7.7. Обратить внимание на то, что

9 + 4v2 = 8 + 4v2 + 1 = (2v2 + 1)?.

7.8. Каждую из вторых скобок разбить на два слагаемых x? ? u? и z? ? у?, после чего собрать все члены, содержащие множитель x? ? u?, и все члены, содержащие z? ? у?. (!)

7.9. Если обозначить левую часть через z, то, освобождаясь от радикалов, можно получить уравнение относительно z.

7.10. Равенство, которое нужно доказать, представляет собой однородное выражение седьмой степени. Возвести в степень

а + b + с = 0    и    а + b = ?с.

7.11. Задача сводится к разбору случаев, позволяющих раскрыть знаки абсолютной величины. Количество рассматриваемых случаев можно уменьшить, если заметить, что равенство, о котором идет речь, не меняется при замене x на ?x.

7.12. Можно разобрать различные случаи взаимного расположения чисел x, у и 0. Однако проще возвести каждую часть в квадрат. Так как обе части неотрицательны, то мы получим равенство, равносильное данному. (!)

7.13. Условие можно записать в виде а? + b? = ?с? и возвести это соотношение в куб.

7.14. Данный трехчлен тождественно равен выражению

(ax + b)? ? (сх + d)?,    где    а > 0, b > 0, с > 0, d > 0.

K главе 8

8.1. Поскольку выражения, стоящие в скобках, расположены симметрично относительно значения x = 5, удобно ввести новое неизвестное у = x ? 5. После того как мы раскроем скобки, произойдут значительные упрощения. (!)

8.2. Можно перемножить скобки по две, чтобы получить квадратные трехчлены, отличающиеся только свободным членом.

8.3. Если записать уравнение в виде x? ? 17 = 3у?, то возникает мысль доказать, что левая часть ни при каких целых x не делится на 3. (!)

8.4. Если целое у зафиксировать, то получим квадратное уравнение относительно x. Поэтому естественно обратить внимание на те ограничения, которые накладывает на у условие неотрицательности дискриминанта этого уравнения. (!)

8.5. Остаток следует искать в виде аx + b, а частное удобно обозначить через Q (x). Следуя определению деления, записать тождество.

8.6. Если переписать уравнение в виде

то благодаря условию целочисленности решений можно ограничить возможные значения у рассмотрением нескольких случаев.

8.7. Если подставить известный корень в уравнение, найти коэффициенты при рациональной и иррациональной частях, то получим систему двух уравнений для определения а и b.

8.8. Ответьте на вопрос: достаточно ли воспользоваться теоремой Виета, в силу которой свободный член и второй коэффициент должны быть положительными?

8.9. Если обозначить первый корень через x1, а знаменатель прогрессии через q, то останется применить теорему Виета. (!)

8.10. С помощью теоремы Виета получить зависимость между ?1, ?2, ?3 и коэффициентами данного уравнения. (!)

8.11. Разделить x? + аx + 1 на x ? ? по правилу деления многочлена на двучлен.

8.12. Ясно, что остаток нужно искать в виде аx + b. Если данный многочлен обозначить через P (x), а частное от его деления на (x ? 2) (x ? 3) — через Q(x), то мы сможем воспользоваться определением деления многочленов.

8.13. Если многочлен x4 + 1 разделится на x? + рx + q, то в частном мы получим многочлен второй степени, т. е. x? + аx + b.

8.14. Если данный многочлен делится на (x ? 1)?, то после замены x ? 1 = у получим многочлен, который

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату