должен делиться на у?.

8.15. Если многочлен четвертой степени с коэффициентом 6 при старшем члене делится на x? ? xq без остатка, то в частном обязательно получится многочлен 6x? + аx + b, в котором а и b определяются одновременно с p и q.

K главе 9

9.1. Точки ?2, ?1, 0 делят числовую ось на четыре интервала, в каждом из которых нужно решить данное уравнение. (!)

9.2. Если рассматривать значения x, обращающие в нуль числа, стоящие под знаками абсолютных величин, то придется разбить числовую ось на пять частей.

Удобнее ввести новое неизвестное у = x?. (!)

9.3. Это уравнение четвертой степени. Следовательно, нужно найти искусственный прием, приводящий к его решению. Удобно воспользоваться тем, что слева стоит сумма квадратов.

9.4. Возвести в куб и сравнить полученное уравнение с данным.

9.5. Свести уравнение к симметрической системе, обозначив первое слагаемое левой части через u, а второе через v. (!)

9.6. Если под радикалами раскрыть скобки, то получим квадратные трехчлены, отличающиеся лишь свободным членом. Поэтому данное в условии уравнение удобно заменить системой, обозначив первое слагаемое его левой части через u, а второе через v.

9.7. Поскольку неизвестное входит в уравнение либо в сочетании x ? b, либо в сочетании а ? x, то удобно ввести обозначения   и получить систему алгебраических уравнений.

9.8. Ввести вспомогательное неизвестное у и свести решение данного уравнения к решению системы уравнений относительно x и у.

9.9. Перенести  в правую часть уравнения и возвести обе части в квадрат.

9.10. Чтобы избавиться от знаков абсолютной величины, можно поступить двояко: либо потребовать, чтобы правая часть уравнения была неотрицательной, и решить уравнения

x? ? 3x/2 ? 1 = ?x? ? 4x + ?,    x? ? 3x/2 ? 1 = x? + 4x ? ?;

либо рассмотреть два случая: в первом выражение, стоящее под знаком абсолютной величины, неотрицательно, а во втором — отрицательно.

9.11. Рассмотреть различные случаи расположения x и у по отношению к нулю (всего придется рассмотреть четыре случая). (!)

9.12. Решить систему уравнений с параметром k, а затем решить систему неравенств. (!)

9.13. Рассмотреть различные случаи взаимного расположения чисел x и у и чисел x и ?у. Это позволит раскрыть знаки абсолютной величины. (!)

9.14. Второе уравнение — уравнение окружности радиуса vа . Нарисовать кривую, которая определяется первым уравнением.

9.15. Одно решение очевидно: x = у = 0. Если ху ? 0, то можно разделить первое уравнение на ху, а второе на x?у?.

9.16. Если бы во втором и третьем уравнениях не было коэффициентов 2 и 3, то уравнения системы получались бы друг из друга с помощью циклической перестановки неизвестных x, у и z. Однако влияние коэффициентов оказывается столь сильным, что попытка использовать это свойство системы не приводит к успеху. Попытайтесь преобразовать систему в распадающуюся, для чего потребуется отыскать алгебраическое выражение, общее для двух уравнений, и исключить его.

9.17. Если первое уравнение системы записать в виде x + у = ?z и возвести в квадрат, то с помощью второго ее уравнения можно найти ху.

9.18. Сопоставьте первое и последнее уравнения. Если записать их в виде

x + у = 1 ? z,    х? + у? = 1 ? z?,

то напрашивается способ, с помощью которого можно преобразовать систему в распадающуюся.

9.19. Если раскрыть скобки, то получим систему линейных уравнений относительно u = x + у + zv = хуxz + yz, w = xyz. Найдя uv и w, можно вычислить х? + у? + z?, если возвести x + у + zu в куб: u? = х? + у? + z? + 3uv ? 3w.

Однако такой путь решения, хотя и прост по идее, требует значительных выкладок. Решение можно упростить, если ввести в рассмотрение многочлен M(t) = (t ? x)(t ? у)(t ? z) + а, который в силу условия задачи имеет корни t = а, t = b, t = с.

9.20. Первые два уравнения системы симметричны относительно x и у. Нужно использовать эту симметрию для того, чтобы получить одинаковые правые части у этих двух уравнений.

9.21. Если второе уравнение возвести в квадрат, то можно сравнить два выражения для (x + у)?. (!)

9.22. В первое уравнение входит у, в последующие уt, yt? и yt? соответственно. Эта закономерность позволяет исключить у.

9.23. Каждый элемент, стоящий в левой части второго уравнения, получается из соответствующего элемента, стоящего в левой части первого уравнения, возведением в квадрат. Нужно использовать это свойство системы.

9.24. Левые части всех трех уравнений симметричны относительно x, у, z. Поэтому, подвергнув какому-то преобразованию любые два уравнения системы, разумно сделать то же самое и с оставшимися

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату