4.1. Если ребро куба обозначить через а, то объем фигуры, лежащей под сечением, можно вычислить как разность объемов двух треугольных пирамид: NАFD и МЕFС (рис. I.4.1 на с. 131).

4.2. Площадь сечения удобно вычислять как разность между площадью треугольника AML (см. рис. I.4.2 на с. 131) и удвоенной площадью треугольника KGL.

4.3. Построение сечения показано на рис. II.4.3. Обратите внимание на то обстоятельство, что 1 = BF.

4.4. Объемы пирамид, о которых шла речь в конце указания I (см. с. 132), нужно выразить через объем данной пирамиды SABCD. Для этого придется найти отношение их высот и оснований. Сделайте отдельный чертеж плоскости, в которой лежит грань SDC.

4.5. Чтобы сравнить объемы фигур, на которые разбивается сечением вторая половина данной пирамиды, удобно в качестве основания выбрать грань BSC.

4.6. Если продолжить ребра А1D1 и А1B1 до пересечения с QR и QP соответственно, то можно будет построить след сечения в плоскости верхнего основания куба.

4.7. Обозначить сторону основания через а и выразить площадь сечения через а и высоту боковой грани.

4.8. Нужно доказать, что точка D лежит на отрезке KM (см. рис. I.4.8 на с. 132). Однако сделать это непосредственно трудно. Удобнее изменить построение: EK — высота пирамиды ЕАВС, D — середина AC. Проведем через K и D прямую, которая пересечет AB в точке M. Докажем, что ЕМ — высота в треугольнике АВЕ. (!!)

Если мы убедимся в том, что KSOD — параллелограмм, то отрезок KD параллелен СО и, следовательно, перпендикулярен к AB, откуда ЕМ — высота треугольника АВЕ.

4.9. В сечении получается пятиугольник, в котором отрезок, параллельный АС1, не является высотой, так как основания параллелепипеда — не квадраты. Высоту нужно вычислить, чтобы найти площадь пятиугольника.

4.10. Докажите, что при вращении точки E тень, отбрасываемая верхним основанием куба, перемещается, оставаясь квадратом со стороной 2h. (!!)

Тень при любом положении источника E состоит из двух квадратов АВСD и А2В2С< sub>2D2, стороны которых параллельны, сторона второго вдвое больше стороны первого, а отрезок, соединяющий центры, имеет постоянную длину R. Чтобы построить из этих квадратов тень, нужно соединить соответствующие вершины квадратов и получить выпуклую фигуру. Задача свелась к плоской.

4.11. Если вместо куба, нижнее основание которого образует с плоскостью ? острый угол ?, оставить фигуру А1В1D< sub>1DВС, образованную двумя треугольниками A1B1D< sub>1, ВСD и диагональным сечением В1D1DB куба, то отбрасываемая на плоскость ? тень не изменится. Остается выразить площадь тени через ребро куба и угол ?.

K главе 5

5.2. В треугольнике АМВ рассмотреть медиану, выразить ее квадрат через стороны треугольника, воспользоваться полученными ранее соотношениями. (!!)

Доказать, что медиана МС равна AB.

5.3. Косинус угла А, участвующий в теореме косинусов, можно определить из треугольника АМО, где О — центр окружности, о которой идет речь в условии задачи. (!!)

Обратное утверждение можно доказывать в такой форме: если AC = 2ВС и 2АМ? + МВ? = АВ?, то АО = МО. Здесь тоже естественно воспользоваться теоремой косинусов для треугольника АМВ. Единственное осложнение возникает из-за необходимости выразить cos А через линейные элементы. Можно поступить иначе: записать теорему косинусов для треугольника АМО, имеющего с АМВ общий угол А, и исключить cos А.

5.4. Два треугольника АМВ и ВМС, имеющие общую сторону ВМ, равновелики тогда и только тогда, если их высоты, опущенные из вершин А и С на общую сторону ВМ, равны.

Задача свелась к построению прямой, проходящей через точку В и равноудаленной от двух данных точек А и С. (!!)

Существуют две и только две прямые, проходящие через точку В и равноудаленные от точек А и С: одна — параллельная AC, другая проходит через середину AC.

5.5. Если прямые AB и CD пересекаются в точке N, то отрезки AB и CD следует перенести в эту точку, двигая каждый по своей прямой. После этого задача сведется к предыдущей (см. задачу 5.4). (!!)

Если прямые AB и CD параллельны, то отрезки AB и CD удобно расположить так, чтобы их центры лежали на общем перпендикуляре. Этот перпендикуляр остается разделить в отношении CD : AB.

5.6. Пусть MN — отрезок длины l, E — его середина, а длина отрезка ОО1 равна а (рис. II.5.6). Если спроецировать точку E на плоскость нижнего основания, то легко вычислить длину отрезка GO, равного отрезку EF. (!!)

Поскольку длина отрезка GO, равного отрезку EF, не зависит от расположения отрезка MN, то точка E лежит на

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату