окружности радиуса

K главе 6
6.1. Воспользоваться тем, что
6.3. Если
6.4. Среди этих же чисел будет 125/2 = 62[16], делящихся на 8 = 2? и т. д.
6.5. Так как сумма цифр числа делится на 81, то естественно предположить, что оно делится на 81. Однако такой признак делимости не был доказан в курсе арифметики, и поэтому придется дважды воспользоваться признаком делимости на 9. Для этого удобно разбить цифры числа на 9 групп, каждая из которых делится на 9.
6.6. Если многочлен
6.7. Чтобы убедиться, что числитель всегда делится на число, стоящее в знаменателе, его придется разложить на множители.
6.8. Способ 1. Предположим, что данная дробь сократима. Тогда 5
Способ 2. Рассмотреть вместо данной дроби обратную и выделить целую часть.
6.10. Пример дальнейших рассуждений: при умножении цифры
6.11. Так как
6.12. Если tg 5° — рациональное число, то cos 10° и cos 30° — тоже рациональные числа.
6.13. Сумма девяток должна быть на 10, или на 21, или на 32, или на 43, ... меньше числа, которое делится на 11. Чему должны быть равны в сумме остальные цифры?
6.14. Однородные выражения удобно преобразовывать с помощью замены
6.15. Удобно записать уравнение в виде (
6.16. Условие 11(4
K главе 7
7.1. Вынести за скобки в числителе , а в знаменателе
. После этого дробь сократится.
7.2. Трехчлен 1 +
7.3. Последнее слагаемое нужно преобразовать отдельно, после чего его можно будет объединить с первыми двумя.
7.4. Поскольку степень каждого члена числителя вдвое больше степени соответствующего члена знаменателя, то дробь целесообразно умножить на выражение, сопряженное знаменателю.
7.6. Преобразовать подкоренные выражения, прибавив и вычтя из них единицу. При извлечении корня использовать условия задачи.
7.7. Можно воспользоваться формулой сложного радикала

7.9. Возвести левую часть, равную 2, в куб, воспользовавшись формулой (
7.10. Равенство
7.11. Итак, можно безболезненно рассмотреть лишь случай .
7.12. Возведенное в куб выражение преобразовать и упростить, воспользовавшись им же.
7.13. Тождественное равенство многочленов означает равенство их коэффициентов:
Из первого равенства следует, что