а)(p ? b) (p ? с) суммой этих чисел можно, воспользовавшись неравенством

xyz ? (x + y + z)?/27 .

10.12. Зная выражения уz и уz через x, можно записать квадратное уравнение с коэффициентами, зависящими от x, корнями которого будут у и z.

10.13. Выразив уz и уz через x, придем к квадратному уравнению, коэффициенты которого зависят от x. Поскольку в условии сказано, что x, у и z — действительные числа, дискриминант полученного уравнения не должен быть отрицательным. (!!)

Найденные границы изменения x, в силу симметрии данных уравнений, распространяются на у и z.

10.15. Чтобы данный трехчлен был отрицательным внутри некоторого отрезка, необходимо и достаточно, чтобы на концах отрезка он принимал неположительные значения.

10.16. Доказать, что условие а > 0 несовместно с требованием, в силу которого оба корня больше а.

10.17. Так как k ? 0 (иначе условие задачи неосуществимо), то парабола должна иметь один корень в интервале (?1, +1), а другой вне этого интервала.

Такое расположение параболы имеет место тогда и только тогда, когда значения трехчлена в точках ?1 и 1 противоположны по знаку.

10.18. Если ветви параболы будут направлены вверх и, кроме того, парабола не будет пересекать положительную полуось Оx, то мы получим расположение параболы, необходимое и достаточное для выполнения условия задачи.

10.22. Числитель и знаменатель полученной дроби должны иметь разные знаки. Приходим к совокупности двух систем.

10.23. Неотрицательный множитель можно отбросить, исключив точки, в которых он обращается в нуль. Оставшееся неравенство удобно привести к виду, в котором правая и левая части неотрицательны, и возвести в квадрат с учетом соответствующих ограничений.

10.24. При x > 0 данное неравенство можно возвести в квадрат (учтя соответствующие ограничения), так как обе его части положительны. При x < 0 неравенство исследуется аналогично.

10.25. Составить квадратное неравенство относительно

10.26. Нельзя забывать о том, что под корнем должно стоять неотрицательное число, в то время как само а может быть и отрицательным.

10.27. Данное неравенство можно переписать в виде

22x ? 3 · 2vx · 2x + 4 · 22vx.

Поделив на 2vx · 2x, получим неравенство, сводящееся к квадратному.

10.29. При x < 0 неравенство может удовлетворяться лишь при условии, что 2x ? 1/3 ? x = n — целое. Отберите те значения n, при которых число x оказывается отрицательным, и ответьте на вопрос, что будет при x = 0.

10.30. Выражение х? ? 5х + 2 легко разложить на множители методом группировки: (х? ? 4х) ? (x ? 2).

10.31. Нужно рассмотреть два случая в зависимости от расположения а относительно единицы.

10.32. Случай x = 0 исследуется непосредственной подстановкой. При x < 0 показатель степени должен быть целым числом. Здесь придется рассмотреть подслучаи в зависимости от того, будет ли это целое число четным или нечетным.

10.35. Если после приведения всех логарифмов к общему основанию перенести все члены неравенства в одну часть, то полученное выражение разлагается на множители, одним из которых будет 2 log5 x + 1.

10.36. Обозначив log2 (2х ? 1) = y, можно привести это неравенство к квадратному.

10.38. После решения алгебраического неравенства нужно вернуться к прежним обозначениям. При этом приходится рассмотреть различные случаи в зависимости от величины а.

10.39. Обозначить logk x через y, после чего получится неравенство относительно y, которое решается методом интервалов.

10.40. Так как под знаком логарифма стоит число 4х ? 6, то x не может быть меньше единицы.

10.41. Разобрать случаи, позволяющие раскрыть знаки абсолютных величин. Таких случаев будет четыре.

10.42. Так как x ? 2 > 0, то x ? 1 > 1 и, следовательно, (x ? 1)? > 1.

10.43. Из условия, что log2 (2 ? 2х?) > 0, легко вывести, что |v2 |x|- 1| ? 1.

10.44. Перейти от неравенств между функциями к неравенству между аргументами и учесть необходимые ограничения.

10.46. Для положительного основания (обозначим его f (x)) нужно решить две системы

которые равносильны неравенству

(f(x) ? 1)(x ? 4) ? 0.

При f(x) < 0 следует рассмотреть случаи, когда показатель степени x ? 4 — четное число.

10.47. Известно, что при неположительном дискриминанте знак квадратного трехчлена не может быть противоположен знаку старшего коэффициента. Если же дискриминант положителен, то такие точки всегда найдутся.

10.48. Поскольку из ложного утверждения следует все, что угодно, решение распадается на две части: а) находим значения а, при которых первое неравенство не имеет решений, тогда из него следует второе; б) если первое неравенство имеет решения, то они не должны выйти за рамки решений второго неравенства.

10.49. Рассмотрите варианты расположения параметра а относительно интервала (1, 2). Особое внимание обратите на граничные точки этого интервала.

10.50. Неравенство

(x + 5)[(x + 3) · 22 + x ? (2 + x)] > 0

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату