5.6.3. Интерполяционный метод Лагранжа.
При решении практических задач часто используют специальные виды интерполяционных полиномов, которые упрощают некоторые вычислительные процедуры. Данный метод предполагает введение вспомогательного полинома li(х) степени n. Полином li(х) в точке х, должен быть равен 1, а в остальных точках отрезка интерполяции должен обращаться в нуль.
Удовлетворяющий этому полином может быть представлен в виде:
(5.5)
Это выражение известно как интерполяционный полином Лагранжа. Важным достоинством ее является то, что число арифметических операций, необходимых для построения полинома Лагранжа, пропорционально n² и является наименьшим для всех форм записи. Данная форма интерполяционного полинома применима как для равноотстоящих, так и для неравноотстоящих узлов. Достоинством является и то, что интерполяционный полином Лагранжа удобен, когда значения функций меняется, а узлы интерполяции неизменны, что имеет место во многих экспериментальных исследованиях. Рекомендуется использовать запись интерполяционного полинома в форме Лагранжа при теоретических исследованиях при изучении вопроса сходимости
К недостаткам этой формы записи можно отнести то, что с изменением числа узлов необходимо все вычисления проводить заново. Выражение (5.4) можно записать в более компактной форме:
(5.5)
Теоретически максимальную точность обеспечивает полином высокой степени. Однако на практике часто используется полином невысокой степени (линейная и квадратичная интерполяция) с увеличением степени интерполяционного полинома возрастают колебательные свойства полинома. Аппроксимация с помощью интерполяционного полинома Лагранжа является достаточно эффективной, когда интерполируются гладкие функции и число n является малым. В частности в математическом обеспечении компьютерных средств имеется стандартные подпрограммы аппроксимации, в которых реализована формула Лагранжа.
5.6.4. Интерполяционный метод Ньютона
На практике для повышения точности интерполяционного полинома незначительно увеличивают количество узлов интерполяции. В этом случае использование метода Лагранжа неудобно, так как добавление дополнительных узлов приводит необходимости пересчета всего интерполяционного полинома в целом. Эти недостатки устраняются, если записать полином Лагранжа, используя интерполяционный метод Ньютона.
Используя понятия разделенных разностей для полинома Ньютона можно получить выражение:
Представление интерполяционного полинома в форме Ньютона является более удобным в практических расчетах. На практике часто заранее неизвестно количество узлов и, следовательно, степень интерполяционного полинома. Для повышения точности интерполяции в сумму могут быть добавлены новые члены, что требует подключение новых узлов. Добавление новых узлов интерполяции приводит лишь к появлению новых слагаемых полинома, без изменения уже существующих, что не требует пересчета всех коэффициентов заново. При добавлении новых узлов интерполяции неважно, в каком порядке они подключаются, но существует одно условие — узлы х, не должны совпадать.
5.6.5. Итерационно-интерполяционный метод Эйткена
Итерационно-интерполяционный метод Эйткена позволяет свести вычисления коэффициентов интерполяционного полинома Лагранжа, с учетом его равенства в узлах интерполяции с исходными данными к вычислению функциональных определителей второго порядка. При этом эффективность метода повышается в тех случаях, когда нет необходимости в получении приближенного аналитического выражения функции f(х), заданной таблично, а требуется лишь определить значение в некоторой точке х*, отличной от узловых точек. Этот метод заключается в последовательной линейной интерполяции. Процесс вычисления

которые является интерполяционными полиномами, построенными соответственно по узлам
(5.7)
Полученный полином является интерполяционным полиномом, построенный по узлам
5.6.6. Чебышевская интерполяция
Метод Чебышева был создан для оптимального выбора узлов интерполяции, если это возможно при решении конкретной задачи, и для получения минимально возможной погрешности аппроксимации. Предполагается, что в выборе расположения узлов интерполяции ограничений нет, и предполагается, что узлы выбираются произвольно. Ставится задача о наилучшем выборе узлов. Наилучшими узлами
Полиномы Чебышева определены в интервале [-1,1]. Для перевода интерполяции в интервале