строит все граничные линии неравенств и позволяет раскрасить разделенные ими области различными цветами:
inequal(ineqs, xspec, yspec, options)
Параметры этой функции следующие: ineqs — одно или несколько неравенств или равенств или список неравенств или равенств; xspec — xvar=min_x..max_x; yspec — yvar=min_y..max_y; о — необязательные параметры, например, указывающие цвета линий, представляющих неравенства или равенства, и областей, образованных этими линиями и границами графика. Пример применения этой функции представлен на рис. 8.59.
Рис. 8.59. Пример графической интерпретации решения системы неравенств
Обратите внимание на задание цветов: optionsfeasible задает цвет внутренней области, для которой удовлетворяются все неравенства (равенства), optionsopen и optionsclosed задают цвета открытых и закрытых границ областей графика, optionsexcluded используется для цвета внешних областей. График дает весьма наглядную интерпретацию действия ряда неравенств (или равенств).
8.9.3. Иллюстрация итерационного решения уравнения f(x)=х
Классическим методом решения нелинейных уравнений является сведение их к виду х = f(x) и применение метода простых итераций
> f := х ->3*ln(x+1);
> x||0 := 0.5;
> x0 := .5;
> for k from 1 to 16 do x||k := evalf(f(x||(k-1))); od;
Нетрудно заметить, что значения х_k в ходе итераций явно сходятся к некоторому значению. Проведем проверку решения, используя встроенную функцию solve:
> f(x) = х; solve(%, х);
Результат выглядит необычно — помимо довольно очевидного корня х=0 значение другого корня получено в виде специальной функции Ламберта. Впрочем, нетрудно найти и его численное значение:
> evalf(%);
К нему и стремятся промежуточные результаты решения. Однако как сделать процесс решения достаточно наглядным? Обычно для этого строят графики двух зависимостей — прямой
Рис. 8.60. Иллюстрация процесса итераций
На рис. 8.60 представлено задание процедуры rec_plot( f1, а, b, х0).
Параметрами этой процедуры являются: f1 — функция
Нетрудно заметить, что для данной функции процесс итераций, хотя и не очень быстро, но уверенно сходится к точке пересечения прямой
8.9.4. Визуализация ньютоновских итераций в комплексной области
Теперь займемся довольно рискованным экспериментом — наблюдением
Рис. 8.61. Наблюдение за процессом ньютоновских итераций в трехмерном пространстве
Наблюдаемая картина весьма необычна и свидетельствует о далеко не простом ходе итерационного процесса. А рискованной эта задача названа потому, что в предшествующих версиях Maple она нередко вела к «зависанию» компьютера.
8.10. Визуализация геометрических построений
8.10.1. Визуализация теоремы Пифагора