Рис. 9.26. Иллюстрация к вычислению длины дуги
9.6.6. Подпакет вычислений Precalculus
Пакет вычислений Precalculus служит для визуализации таких операций, как вычисление полиномов, нахождение пределов функций, решение систем неравенств, представление функций и др. Он содержит только интерактивные средства, построенные по аналогии с приведенными ранее средствами. Поэтому и здесь мы ограничимся парой примеров.
Например, для получения графика и корней полинома х^3 + 3*х^2 - 2 достаточно исполнить команды:
> with(Student[Precalculus]):
> PolynomialTutor(х^3+3*х^2-2);
В появившемся интерактивном окне можно наблюдать график полинома и список его действительных корней — рис. 9.27.
Рис. 9.27. Окно с графиком полинома и его вычисленными корнями
Следующий пример иллюстрирует вызов обучающего окна по стандартным функциям:
> StandardFunctionsTutor();
При таком задании в окне задается функция синуса, но ее можно изменить на другую функцию или выражение со стандартными функциями — например, sin(x)/x (рис. 9.28). Кроме графика исходной функции (он дан красным цветом) строится график преобразованной функции. Используется линейное преобразование с набором заданных параметров
Рис. 9.28. Окно с графиком основной и преобразованной функциями
9.6.7. Другие возможности и особенности пакета Student Package
Из других возможностей пакета Student можно отметить расширение возможностей графики с помощью десятков модифицированных или новых опций графики и графических функций. Познакомиться с набором опций можно по справке для данного пакета.
К сожалению, ввиду новизны пакета он содержит явные недоработки. Например, на рис. 9.25 непонятно, что выводит третья кривая на рисунке — объяснения по этому поводу нет в справке по примененной функции. При больших x места на графике для представления чисел, отложенных по осям, явно не хватает и цифры отображаются с большими искажениями. Впрочем, стоит отметить, что по пакету представлены исходные коды на Maple-языке, так что чересчур требовательный пользователь может довести пакет «до ума». Несомненно, что корпорация Maple-Soft планирует существенное расширение средств Maplets в программных утилитах, включенных в пакеты расширений систем Maple.
Глава 10
Типовые средства программирования
По существу все описанные выше средства (операторы, команды и функции) систем Maple 9.5/10 являются компонентами языка программирования системы Maple. Но есть ряд типовых средств программирования (функции пользователя, условные выражения, циклы, средства вывода, маплеты и др.), которые и рассматриваются в данной главе [23, 51, 52]. Применение таких средств существенно расширяет возможности систем Maple в решении ряда математических и научно-технических задач.
10.1. Задание функций
10.1.1. Задание функции пользователя
Хотя ядро Maple 9 5/10, библиотека и встроенные пакеты расширения содержат свыше 3500 команд и функций, всегда может оказаться, что именно нужной пользователю (и порою довольно простой) функции все же нет. Тогда возникает необходимость в создании собственной функции, именуемой
name(x,y,...)->expr
После этого вызов функции осуществляется в виде name(х,у,…), где (x,y,…) — список формальных параметров функции пользователя с именем name. Переменные, указанные в списке формальных параметров, являются локальными. При подстановке на их место фактических параметров они сохраняют их значения только в теле функции (expr). За пределами этой функции переменные с этими именами оказываются либо неопределенными, либо имеют ранее присвоенные им значения.
Следующие примеры иллюстрирует сказанное (файл p1):
> restart;
> х:=0;y:=0;
> m:=(x,y)->sqrt(х^2+y^2);
> m(3,4);
> m(3., 4);
> [x,y];
Нетрудно заметить, что при вычислении функции m(х,у) переменные х и у имели значения 3 и 4, однако за пределами функции они сохраняют нулевые значения, заданные им перед введением определения функции пользователя. Использование хотя бы одного параметра функции в виде числа с плавающей точкой ведет к тому, что функция возвращает результат также в виде числа с плавающей точкой.
10.1.2. Конструктор функций unapply