Еще один способ задания функции пользователя базируется на применении функции- конструктора unapply:

name:=unapply(expr, var1, var2, ...)

Ниже даны примеры такого задания функции пользователя (файл p1):

> restart;

> fm:=unapply(sqrt(х^2+y^2),х,y);

> fm(4.,3.);

5.000000000

> fe:=unapply(х^2+y^2,х,y);

fе:=(х,у)→х²+у²

> fe(sin(х),cos(х));

sin(x)² + cos(x)²

> simplify(fe(sin(x),cos(x)));

1

Последний пример показывает возможность проведения символьных операций с функцией пользователя.

10.1.3. Визуализация функции пользователя

В ряде случаев весьма желательна визуализация результатов выполнения функций пользователя. Порой она может давать неожиданный результат. На рис. 10.1 представлены примеры задания двух функций пользователя от двух переменных и построение их графиков с помощью функции plot3d.

При задании функций пользователя рекомендуется просмотреть их графики в нужном диапазоне изменения аргументов. К сожалению, наглядными являются только графики функций одной и двух переменных.

Рис. 10.1. Примеры задания функций пользователя двух переменных с построением их графиков

10.1.4. Импликативные функции

Другой важный класс функций, которые нередко приходится задавать — импликативные функции, в которых связь между переменными задана неявно в виде какого-либо выражения. Самый характерный пример такой функции — это выражение для задания окружности радиусаr: х²+у²=r².

Итак, импликативные функции записываются как уравнения. Соответственно их можно решать с помощью функции solve. Следующие примеры иллюстрируют задание уравнения окружности в общем и в частном (численном) виде (файл p1):

> impf:=х^2+y^2=r^2;

impf := x² + у² = r²

> subs(х=а,impf);

а² + у² = r²

> solve(%);

> impf1:=х^2+у^2=25;

impf1 := х² + у² =25

> subs(х=4,impf1);

16 + y² =25

> solve(%);

3, -3

Для графической визуализации импликативных функций служит функция implicitplot пакета plots. На рис. 10.2 представлено задание двух импликативных функций и построение их графиков.

Рис. 10.2. Задание двух импликативных функций и построение их графиков

В данном случае задано построение двух эллипсов. Верхний — это окружность, сплюснутая по вертикали, а второй — наклонный эллипс.

10.2. Управляющие структуры

10.2.1. Условные выражения

Программы, все инструкции которых выполняются строго последовательно называются линейными программами. Большинство же программ относятся к разветвляющимся программам, у которых возможны переходы от одной ветви с командами к другой в зависимости от получаемых при вычислениях результатов и условий работы. Для создания таких программ используются управляющие структуры.

Простейшую конструкцию разветвляющихся программ в Maple-языке программирования задает оператор if или оператор условного выражения:

if <Условие сравнения> then <Элементы>

|elif <Условие сравнения> then <Элементы>|

|else <Элементы>|

fi;

В вертикальных чертах | | указаны необязательные элементы данной конструкции. Следующие два вида условных выражений чаще всего используются на практике:

if <Условие> then <Элементы 1> fi — если Условие выполняется, то исполняются Элементы 1, иначе ничего не выполняется;

if <Условие> then <Элементы 1> else <Элементы 2> fi — если Условие выполняется, то исполняются Элементы 1, иначе исполняются Элементы 2.

В задании условий используются любые логические конструкции со знаками сравнения (<, <=, >, >=, =, <>) и логические операторы and, or и not, конструкции с которыми возвращают логические значения true и false.Рассмотрим следующий простой пример (файл р2):

> х:=-5:

> if х<0 then print(`Negative`) fi;

Negative

> x:=1:

> if x<0 then print(`Negative`) fi;

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату