> sys2:=massa[1]*diff(x(t), t$2) =

-A[2]*diff(x(t),t),massa[1]*diff(y(t), t$2) =

-A[2]*(diff(y(t),t))-massa[1]*g;

> sys3:=massa[2]*diff(x(t), t$2)=

-A[1]*diff(x(t),t),massa[2]*diff(y(t), t$2)=

-A[1]*(diff(y(t),t))-massa[2]*g;

> sys4:=massa[2]*diff(x(t), t$2) =

-A[2]*diff(x(t),t),massa[2]*diff(y(t), t$2) =

-A[2]*(diff(y(t),t))-massa[2]*g;

Зададим исходные числовые безразмерные данные для расчета:

> Vo:=20;massa:=[0.5,0.1];А:=[0.1,0];alpha:=Pi/4;g:=9.8;

Vo := 20 massa := [.5, .1] А := [.1, 0] 1 α := ¼ π 4 g := 9.8

Выполним решение заданных систем ДУ:

> pi:=dsolve({sys1,х(0)=0,D(х)(0)=Vox,y(0)=0,D(у)(0)=Voy}, {y(t),x(t)},type=numeric ,output=listprocedure):

> p2:=dsolve({sys2,x(0)=0,D(x)(0)=Vox,y(0)=C,D(y){0)=Voy}, {y(t),x(t)},type=numeric, output=listprocedure):

> p3:=dsolve({sys3,x(0)=0,D(x)(0)=Vox,y(0)=0,D(y)(0)=Voy}, {y(t),x(t)},type=numeric, output=listprocedure):

> p4:=dsolve({sys4,x(0)=0,D(x)(0)=Vox,y(0)=0,D(y)(0)=Voy}, {y(t),x(t)},type=numeric, output=listprocedure):

Создадим графические объекты - результаты решения систем ДУ:

> a1:=odeplot(p1, [x(t), y(t)], 0..3, color=green, view=[0..50,0..15], thickness=2):

> a2:=odeplot(p2, [x(t), y(t)], 0..3, color=red, view=[0..50, 0..15], thickness=2):

> a3:=odeplot(p3, [x(t), y(t)], 0..3, color=blue, view=[0..50, 0..15], thickness=2:

> a4:=odeplot(p4, [x(t), y(t)], 0..3, color=black, view=[0..50, 0..15], thickness=2):

Построим графики траекторий для первого случая:

> t:=textplot([[25,8, `А=0.1`], [35,9, `А=0`]],color=blue, font=[TIMES, ROMAN, 12])

> t1:=textplot([[17, 3, `A=0.1`], [35,9, `A=0`]], color=blue, font=[TIMES, ROMAN, 12]):

> display({a1,a2,t},title=`Траектория полета тела массой 500 г`, labels=[x,y], labelfont= [TIMES,ROMAN,14]);

Графики траекторий полета камня с массой 500 грамм представлены на рис. 11.22.

Рис. 11.22. Баллистические траектории камня с массой 500 грамм

Теперь построим графики траекторий для второго случая:

> display({a3,а4,t1},title=`Траектория полета тела массой 100 г`,

labels=[х,у], labelfont=[TIMES,ROMAN,14]);

Они представлены на рис. 11.23.

Рис. 11.23. Баллистические траектории камня при массе 100 грамм

Из проведенных расчетов и графиков видно, что при учете силы сопротивления воздуха дальность и высота полета сильно уменьшаются по сравнению с полетом в вакууме, и эта разница зависит от массы тела, поэтому при небольшой массе тела сопротивлением воздуха пренебрегать нельзя.

11.2.2. Движение частицы в магнитном поле

От реального мира перейдем к микромиру. Пусть микрочастица массой 9∙10- 31 кг и зарядом +1,6∙10-19 Кл влетает в магнитное поле с индукцией В=0,1 Тл под углом а=80. Рассчитаем траекторию движения частицы при начальной скорости Vо=1∙107 м/с (файл traekt). Начнем с рестарта:

> restart;

Сила Лоренца, действующая на движущуюся частицу F=q(E+[v, В]). Проекции векторного произведения [v, В] на оси х, у, z:

[v, B]x = vy*Bz-vz*By [v, B]y = vz*Bx-vx*Bz [v, B]z = vx*By-vy*Bz

В соответствии с этим известные из курса физики дифференциальные уравнения, описывающие траекторию полета частицы по осям х, у, z имеют вид:

> sys:=diff(х(t),t$2)=q*(Ex+(diff(у(t), t)*Bz-

diff(z(t),t)*By))/massa,diff(y(t),t$2)=q*(Ey+(diff(z(t),t)*Bx -

diff(x(t),t)*Bz))/massa,diff(z(t),t$2)=q*(Ez+(diff(x(t),t)*

By-diff(y(t),t)*Bx))/massa;

Зададим исходные числовые данные (опустив размерности):

> q:=-1.6у-19:massa:=9.1е-31:V:=1е7:alpha:=80*Рi/180:

> Vx:=V*cos(alpha):Vy:=V*sin(alpha): Ex:=0:Ey:=0:Ez:=0: Bx:=0.1:By:=0:

Bz:=0:

Построим траекторию движения частиц в пространстве:

> with(DEtools):DEplot3d({sys},{x(t), y(t) ,z(t)},

t=0..2e-9, [[x(0)=0, D(x)(0)=Vx, у(0)=1, D(y)(0)=Vy, z(0)=0, D(z)(0)=0]],

stepsize=1e-11,orientation=[24,117]);

Полученная траектория представлена на рис. 11.24. Она имеет вид спирали в пространстве. При этом скорость движения частицы вдоль оси x неизменна, а вдоль осей у и z имеет характерную колебательную компоненту. Случай явно куда менее тривиальный, чем полет камня, описанный выше.

Рис. 11.24. Траектория движения частицы в магнитном поле

Мы можем найти аналитическое представление для траектории частицы в виде параметрически заданной (с параметром времени t) системы из трех уравнений:

>xyz:=dsolve({sys,х(0)=0,D(х)(0)=Vx,у(0)=0,D(у)(0)=Vy,z(0)=0, D(z)(0)=0}, (x(t), у(t), z(t)}, method=ldplace);

Моделирование движения заряженной частицы в пространстве с магнитным полем показывает, что для принятых для моделирования параметров решаемой задачи, движение частицы происходит по

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату