[х(0)=-а, D(х)(0)=V0x, y(0)=р*4, D(y)(0)=0], [х(0)=-а, D(х)(0)=V0x, y(0)=p*8, D(y)(0)=0], [х (0)=-а, D(x)(0)=V0x, y(0)=р*12, D(y)(0)=0], [х(0)=-а, D(х)(0)=V0x, y(0)=p*16, D(y)(0)=0], [х(0)=-а, D(х)(0) =V0x, y(0)=р*20, D(y)(0)=0], [х(0)=-а, D(х)(0)=V0x, y(0)=р*24, D(y)(0)=0], [х(0)=-а, D(х)(0)=V0x, y(0) =р*28, D(y)(0)=0]],
х(t)=-а..a, scene=[x(t),у(t)], stepsize=1e-21, linecolor=black):
> with(plottools): yy:=circle([0,0],2E-14,color=red,thickness=2) : Warning, the name translate has been redefined
Построим центр ядра (кружок со знаком +) и траектории альфа-частиц
> ss2:=PLOT(TEXT([0,-0.3а-14],` +`), FONT(HELVETICA, OBLIQUE,14)):
Осталось построить график траекторий движения альфа-частиц вблизи центра атома
> with(plots):
Warning, the name chargecoords has been redefined
> display([ss,yy,ss2],title=`Рассеивание а-частиц`, axes=framed);
График траекторий движения альфа-частиц вблизи ядра представлен на рис. 11.27. Этот график настолько нагляден, что не требует пояснения.
Рис. 11.27. Траектории движения альфа-частиц вблизи ядра атома
Моделирование движения альфа-частиц вблизи малого и «массивного» ядра атома дают наглядное представление о математической и физической сути данного опыта. Надо лишь помнить, что нельзя нацеливать быстро летящие альфа-частицы прямо в центр ядра. Более сложные, чем приведенные, расчеты показывают, что при этом альфа-частица настолько близко подходит к ядру, что надо учитывать новые факторы, возникающие при близком взаимодействии. Они могут привести к тому, что частица будет поглощена ядром. Но, это уже тема нового разговора, выходящего за рамки данной книги.
11.3. Моделирование и расчет электронных схем
11.3.1. Нужно ли применять Maple для моделирования и расчета электронных схем?
Нужно ли применять системы компьютерной математики для анализа, расчета и моделирования
Но, с другой стороны, анализ схем в таких программах настолько автоматизирован, что начисто теряется его физическая и математическая сущность. Это не так уж страшно, когда моделируются типовые схемы на давно известных, или скорее просто хорошо знакомых, электронных приборах. Но, это явно плохо, когда объектом исследования и моделирования являются новые нетрадиционные схемы на новых или малоизвестных приборах или когда знание физических и математических основ работы таких схем принципиально необходимо. Например, при изучении их в вузах и университетах. В этом случае применение систем компьютерной математики не только возможно, но и принципиально необходимо.
11.3.2. Применение интеграла Дюамеля для расчета переходных процессов
Вернемся к линейным системам и рассмотрим еще один полезный метод расчета электрических цепей — с помощью
Рис. 11.28. Расчет реакции дифференцирующей цепи на экспоненциальный перепад напряжения
Рис. 11.28 представляет начало документа, в котором выполнен указанный выше расчет. Представлены заданные зависимости
Окончание документа, представленное на рис. 11.29, демонстрирует расчет на основе интеграла Дюамеля реакции дифференцирующей RC-цепи на экспоненциально затухающий синусоидальный сигнал
Рис. 11.29. Расчет реакции дифференцирующей цепи на синусоидальный сигнал с экспоненциально уменьшающейся амплитудой
Обратите внимание на то, что выражение для
11.3.3. Малосигнальный анализ фильтра-усилителя на операционном усилителе
Теперь рассмотрим проектирование аналогового полосового фильтра-усилителя на операционном усилителе (файл af), схема которого приведена на рис. 11.30. Сам операционный усилитель будем считать идеальным.
Рис. 11.30. Схема полосового фильтра на интегральном операционном усилителе
Подготовимся к расчету фильтра:
> restart:
Зададим основные уравнения, описывающие работу усилителя на малом сигнале:
> Vo := (-Z2/Z1)* Vi;
> Z1 := R3 + 1/(I*omega*C3);
> Z2 := R4*1/(I*omega*C4) / (R4 + 1/(I*omega*C4));