4.4.1. Определение интегралов

Интегральное исчисление зародилось из практической необходимости вычисления площадей, объемов и центров тяжести различных фигур. Если есть некоторая функция f(х), то определенный интеграл вида

дает значение площади, ограниченной вертикалями а и именуемыми пределами интегрирования, кривой f(х) и осью абсцисс X. Под площадью надо понимать ее алгебраическое значение, то есть разность между площадью над осью X и под ней. В этом случае ясно, что определенный интеграл может иметь как положительные, так и отрицательные значения.

Если f(x)dx есть дифференциал функции F(x), то

f(x)dx = dF(x).

Функцию F(x) называют первообразной функции f(х). Наиболее общий вид первообразной функции f(x) называют неопределенным интегралом и обозначают как

∫f(x)dx.

Соответственно определенный интеграл определяется как:

В состав этого выражения включена некоторая постоянная интегрирования С, подчеркивающая, что для одной и той же f(х) существует масса первообразных, описываемых одной и той же линией, но смещенных по вертикали на произвольную постоянную. Например, для f(х)=sin(x) имеем

∫sin(x)dx = -sin(x) + С.

Определенный интеграл представляется числом, а неопределенный — функцией. Для их вычисления используются принципиально различные методы. Так, вычисление неопределенного интеграла возможно только в системах символьной математики. А вот для вычисления определенных интегралов используются как символьные, так и численные методы интегрирования.

Встречается ряд специальных видов интегралов. Один из них — интеграл с переменным верхним пределом, представленный в виде:

В данном случае верхний предел представлен функцией y(х).

Следует отметить, что Maple обычно стремиться вычислить определенный интеграл в аналитическом виде, даже если он представляется числом. Если нужно найти заведомо численное значение определенного интеграла, можно воспользоваться численными методами вычисления.

4.4.2. Вычисление неопределенных интегралов

Для вычисления неопределенных и определенных интегралов Maple предоставляет следующие функции:

int(f,x); int(f,х=а..b);

int(f,х=а..b,continuous);

Int(f,x); Int(f,x=a..b);

Int(f,x=a..b,continuous);

Здесь f — подынтегральная функция, x — переменная, по которой выполняются вычисления, а и b — нижний и верхний пределы интегрирования, continuous — необязательное дополнительное условие.

Maple старается найти аналитическое значение интеграла с заданной подынтегральной функцией. Если это не удается (например, для «не берущихся» интегралов), то возвращается исходная запись интеграла. Ниже приведены примеры визуализации и вычисления неопределенных интегралов (файл intex):

> Int(a*x^n,x)=int(а*х^n,х);

> Int(sin(х)/х,х)=int(sin(х)/х,х);

> Int(ln(х)^3,х);

∫ln(x)³dx

> value(%);

ln(x)³x - 3х ln(x)² = 6х ln(x) - 6х

> Int(х^5*ехр(-х),х);

∫x4e(-x)dx

> value(%);

5 е(-x) - 5х4е(-x) - 20х3е(-x) - 60х2е(-х) - 120хе(-x) - 120е(-x)

> Int(1/х,x)=int(1/х,х);

Обратите внимание, что в аналитическом представлении неопределенных интегралов отсутствует произвольная постоянная С. Не следует забывать о ее существовании.

Возможно вычисление сумм интегралов и интегралов сумм, а также интегралов от полиномов.

> Sum(Int(x^i,х),i=1..5);

> value(%);

> Int(sum(х^i, i=1..5),x);

> value(%);

> Р(х):=а*х^3+b*х^2+с*х+d;

Р(х) := ax³ + bx² + сх + d

> int(Р(х),х);

Maple 9.5 успешно берет большинство справочных интегралов. Но не всегда форма представления интеграла совпадает с приведенной в том или ином справочнике.

4.4.3. Конвертирование и преобразование интегралов

В некоторых случаях Maple не может вычислить интеграл. Тогда он просто повторяет его. С помощью функций taylor и convert можно попытаться получить аналитическое решение в виде полинома умеренной степени, что демонстрирует следующий характерный пример:

> int(exp(sin(х)),х);

∫esin(x)dx

> convert(taylor(%,х=0,8),polynom);

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату