74. Пятый раунд (Желтое и фиолетовое)

Первое заявление первого братца согласуется с заявлением второго братца, поэтому они либо оба лгут, либо оба говорят правду. Следовательно, у них карты разных мастей (снова тот же принцип!). Это означает, что, действительно, по меньшей мере у одного из братцев карта фиолетовой масти и первый братец не солгал. Тогда и его второе утвержде-

ние должно быть правдивым, и его действительно зовут Труляля (и у него карта желтой масти, а у Труляля — фиолетовой).

75. Шестой раунд (Желтое и фиолетовое)

Братцы противоречат друг другу, поэтому один из них лжет, а другой говорит правду. Следовательно, у них карты одной масти (все тот же принцип!). Это означает, что первый братец сказал правду.

76. Кто есть кто?

На обратной стороне таблички нарисован либо квадрат, либо круг. Предположим, это квадрат. Тогда квадрат означает «да», а круг означает «нет». В этом случае второй братец ответил на вопрос «нет», и значит, он солгал! Предположим теперь, что на обратной стороне нарисован круг. Тогда круг означает «да», и второй братец ответил «да», но это снова ложь, ведь на обратной стороне вовсе не квадрат! Следовательно, второй братец солгал, поэтому его зовут Труляля.

77. О чем должна спросить Алиса?

Можно придумать множество вопросов, которые помогут Алисе получить приз. На мой взгляд, самый простой из них звучит так: «Ваша карта красной масти?»

Какой бы знак не был дан в качестве ответа, он должен означать «да»: тот, у кого красная карта, правдиво в этом признается, а тот, у кого черная карта, солжет, что его карта красной масти. Итак, ответ второго братца был «да». Предположим, что он нарисовал в воздухе квадрат. Тогда его квадрат означал «да», и приз находится у него. Если же в ответ он прочертил в воздухе круг, то его круг означал «да», а квадрат — «нет» и приз не у него.

Вкратце, если братец нарисовал квадрат, приз у него. Если он нарисовал круг, приз находится у другого братца.

Глава 9

Для всех решений в этой главе назовем первого подсудимого А, второго — Б и третьего — В.

78. Кто виновен?

Нам дано, что солгал тот, кто был виновен. Если бы это был Б, он сказал бы правду, признав свою вину, поэтому Б не может быть виновным. Если бы виновным был А, то все трое солгали бы (потому что А обвинил бы Б или В, которые оба невиновны; Б обвинил бы самого себя, невиновного; и В обвинил бы или самого себя, невиновного, или Б, который тоже невиновен). Но нам ведь известно из условий задачи, что не все трое солгали, поэтому и А не может быть виновным. Таким образом, виновным является подсудимый В.

79. Второй судебный отчет

Что же такого мог сообщить Рыцарь Белому Королю, что позволило тому обнаружить виновного? Если бы Королю было сказано, что все трое солгали, ему никогда не удалось бы разобраться, кто из подсудимых виновен, потому что возможно, что виновен был А, а вину возложил на Б, а Б и В обвинили друг друга (и все трое солгали). Могло быть и такое, что Б был виновен и обвинил В, а А и В обвинили друг друга

(и снова все трое солгали). Могло быть и так, что В был виновен и при этом возложил вину на А, а А и Б обвинили друг друга. Поэтому Белому Королю сказали что угодно, но только не то, что все трое подсудимых солгали.

Мог бы Король решить задачу, если бы ему сказали, что ровно двое подсудимых солгали, и если бы он знал, кто именно? Нет, и вот почему. Предположим, к примеру, что ему сообщили, что А сказал правду, а Б и В оба солгали. Тогда, на кого бы А ни указал, это и был бы виновный (ведь А сказал правду). Так, А мог указать на Б (и в этом случае Б был бы виновным), при этом Б и В оба солгали, обвинив А (а может Б обвинил В, а В обвинил А). Могло быть и так, что А обвинил В, а Б и В оба обвинили А, и в этом случае виновным оказался бы В. Следовательно, если бы А был тем единственным, кто дал правдивые показания, то либо Б, либо В мог быть виновен. Подобным образом, если Б был единственным давшим правдивые показания, то виновными могли быть либо А, либо В, а если бы таким правдолюбивым обвиняемым оказался В, то виновным могли быть как А, так и Б. Итак, если Белому Королю было сказано, что тем единственным обвиняемым, который сказал правду, был А, или Б, или В, Король никогда бы не узнал, кто же виновен на самом деле. Отсюда вывод, что ничего такого Рыцарь ему не сообщил.

Мог ли Рыцарь сообщить Королю, что все трое сказали правду? Нет, и это невозможно, ведь виновный подсудимый несомненно солгал, возложив свою вину на одного из двух других обвиняемых, которые оба были невиновны.

Остается единственный случай: только один из обвиняемых солгал. Если это так, то солгал именно тот, кто виновен, потому что, если бы солгал невиновный, у нас получилось бы уже два лжеца — он сам и виновный, не признавший свою вину. Следовательно, Белый Король узнал одно из трех.

Случай 1. А солгал, Б сказал правду, В сказал правду.

Случай 2. А сказал правду, Б солгал, В сказал правду.

Случай 3. А сказал правду, Б сказал правду, В солгал.

Теперь мы видим, каким образом Белый Король вычислил виновного, но как мы можем вычислить виновного, ведь нам неизвестно, какой из этих трех случаев Рыцарь описал Королю? Здесь нам пригодится информация о Шалтае-Болтае. Итак, Шалтай-Болтай либо спросил Рыцаря, были ли ложны любые два показания подряд, либо были ли правдивы любые два показания подряд. Первый вопрос ни к чему

бы его не привел (ведь было дано всего одно ложное показание), и, если бы Шалтай-Болтай задал именно этот вопрос, он получил бы отрицательный ответ и никак не смог бы понять, какой случай из трех имел место. Значит, Шалтай-Болтай спросил, были ли правдивы любые два показания подряд. Если бы он получил положительный ответ, то исключил бы Случай 2, но все равно не смог бы определить, кто виновен. Но ведь Шалтай-Болтай смог это определить, поэтому на свой вопрос он должен был получить отрицательный ответ и понять, что имел место Случай 2. Итак, виновен подсудимый Б.

80. Следующее заседание суда

Эта задача довольно проста. Поскольку А сказал правду, обвинив одного из двух других подсудимых, то виновного следует искать среди Б и В. Тогда А невиновен. Если все изменили свои показания, но при этом все равно указали на кого-то другого, только не на себя, правду на этот раз сказал Б, и раз нам уже известно, что А невиновен, Б возложил бы вину на В. Итак, виновным является подсудимый В.

81. Еще одно заседание суда

Поскольку А сказал правду и возложил при этом вину на Б или на В, то виновен либо тот, либо другой. Итак, А невиновен.

Далее Бармаглот сообщил Белому Рыцарю, что В либо солгал, либо сказал правду. Если бы он сказал Рыцарю, что В солгал, тот не смог бы определить виновного, потому что могло быть так, что В был виновен и оболгал А (или Б), либо же виновным был Б, а В оболгал А. Итак, если В солгал, невозможно определить, кто виновен, Б или В. С другой стороны, если бы В сказал правду, он не стал бы обвинять А (который невиновен), а обвинил бы Б, а раз его показания правдивы, то виновным и должен быть Б. Итак, Бармаглот должен был сообщить Белому Рыцарю, что В сказал правду, и это позволило Белому Рыцарю вычислить виновного, коим и оказался Б.

82. Другое дело

И снова, поскольку А сказал правду и обвинил одного из своих соседей по скамье подсудимых, сам он должен быть невиновен. Если бы Бармаглот сообщил Белому Рыцарю,

что В сказал правду, тот даже без дополнительной информации знал бы, что виновный — это Б (см. решение предыдущей задачи). Но мы знаем, что Белый Рыцарь не мог без дополнительной информации вычислить виновного. Значит, ему сказали, что В солгал. После этого он узнал, кого обвинил В, и эта

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату