статические переменные, не являющиеся массивами, Язык С динамически размещает переменные типа указатель и массивы, используя библиотечную функцию malloc.

[x]. PL/I поддерживает все модели.

[x]. Lisp системы традиционно были высоко динамичны и полагались большей частью на динамический режим распределения памяти. Одна из наиболее важных операций Lisp, используемая многократно для представления списков, - CONS, создает структуру из двух полей. В первом поле хранится значение элемента, а во втором - указатель на следующий элемент. Здесь CONS, скорее источник новых объектов, чем инструкция их создания.

Повторное использование памяти в трех режимах

Для объектов, созданных как в основанном на стеке режиме, так и в динамическом режиме, возникает вопрос, что делать с неиспользуемыми объектами? Возможно ли память, занятую таким объектом, повторно использовать в более поздних инструкциях создания новых объектов?

В статической модели проблемы не существует: для каждого объекта есть одна навсегда присоединенная сущность. Выполнение требует поддерживать связь с объектом все время, пока сущность активна. Поэтому повторное использование памяти невозможно в настоящей трактовке этого понятия. Однако при острой нехватке памяти похожая технология иногда используется. Если вы уверены, что объекты, присоединенные к двум сущностям, никогда не нужны одновременно, и эти сущности не должны сохранять свои значения между последовательными использованиями, то можно на одной и той же памяти размещать две или более сущности, будучи совершенно увереными в безопасности того, что вы делаете. Эта техника, известная как перекрытие (overlay), достаточно ужасная, все еще практикуется при работе вручную.

Если все-таки использовать перекрытие, то, конечно, его следует выполнять автоматически, используя специальные инструменты, - слишком велика вероятность ошибки. Главной проблемой остается возможность изменений: решение о перекрытии двух переменных может быть корректным на определенном этапе жизни программы. Неожиданное изменение может сделать его неправильным. Мы столкнемся с похожей проблемой ниже, в технологии сборки мусора.

В режиме, основанном на стеке, объекты, присоединенные к сущностям, могут быть размещены в стеке. В языках с блочной структурой ситуация упрощается: размещение объектов происходит одновременно для всех сущностей данного блока, допуская использование одного стека для всей программы. Схема действительно элегантна, потому что использует два множества сопутствующих событий:

Динамическое свойство (событие времени выполнения) Статическое свойство (положение в тексте программы) Техника реализации
Размещение объекта Начало блока Вталкивание объектов (один для каждой локальной сущности блока) в стек
Удаление объекта Конец блока Выталкивание объектов из стека

Таблица 9.1.Размещение и удаление объектов в языках с блочной структурой

Простота и эффективность этой техники реализации является одной из причин успешности языков с блочной структурой. В динамическом режиме все не так просто. Проблема связана с мощью самого механизма: в период компиляции ничего нельзя сказать о создании объекта, невозможно предсказать, когда данный объект может стать ненужным.

Отсоединение

В динамическом режиме объекты могут стать ненужными в непредсказуемые моменты периода выполнения; раз так, то некоторый механизм (определяемый позже в этом обсуждении) может освобождать занятую ими память.

Причина - присутствие в этом режиме выполнения операции отсоединения (detachment) , обратной к операции присоединения. В предыдущей лекции изучалось, как сущности присоединяются к объектам, но не рассматривались детали отсоединения. Пора это исправить.

Отсоединение распространяется только на объекты x ссылочного типа. Если x развернутого типа - значением x является объект O, то нет способа отсоединить x от O. Заметьте, однако, если x развернутый атрибут некоторого класса, O представляет подобъект некоторого большого объекта BO. Тогда BO, а вместе с ним и O, может стать недостижимым по одной из причин, изучаемых ниже. Посему в оставшейся части этой лекции можно ограничиться рассмотрением сущностей ссылочного типа.

Рис. 9.4.  Отсоединение

Основные причины отсоединения следующие. Предположим, x и y сущности ссылочного типа вначале присоединены к объектам O1 и O2. Рисунок иллюстрирует случаи D1 и D2.

[x]. (D1) Присваивание вида x := Void, или x := v где v типа void, отсоединяет x от O1.

[x]. (D2) Присваивание вида y := z, где z не присоединен к объекту O2, отсоединяет y от O2.

[x]. (D3) Завершение подпрограммы отсоединяет формальные аргументы от присоединенных к ним объектов.

[x]. (D4) Инструкция создания create x , присоединяет x к вновь созданному объекту и, следовательно, отсоединяет x, если он ранее был присоединен к объекту O1.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ОБРАНЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату