do

...

end

При каждом вызове процедуры p три значения вталкиваются в стек:

Рис. 9.7.  Размещение сущностей для процедуры

Тремя новыми значениями являются: целое n, не влияющее на проблему управления объектами (оно исчезнет при завершении процедуры и не ссылается на другие объекты); ссылка s, являющаяся примером категории О1; и объект с типа COMPOSITE. Сам объект содержится в стеке и занятая объектом память может быть использована по завершении работы процедуры. Но он содержит ссылочное поле r, являющееся примером категории О2.

Итак, для определения достижимости объекта в классическом подходе, комбинирующем стековую и динамическую память, следует начать со ссылок в стеке (переменные ссылочного типа и ссылочные поля комбинированных объектов), и последовательно просмотреть все ссылочные поля присоединенных объектов, если они существуют.

Достижимые объекты в ОО-модели

ОО-структура данных, представленная в предыдущих лекциях, имеет некоторые отличия от рассмотренной выше структуры.

Рис. 9.8.  Достижимость в ОО-модели

Работа любой системы начинается с создания объекта, называемого корневым объектом системы, или просто корнем (когда нет путаницы с корневым классом, задаваемым статически). Корень в этом случае является одним из оригиналов.

Другое множество оригиналов возникает из-за возможного присутствия локальных переменных в подпрограмме. Рассмотрим подпрограмму вида

some_routine is

local

rb1, rb2: BOOK3

eb: expanded BOOK3

do

. . .

create rb1

. . .Операции, возможно использующие rb1, rb2 и eb . . .

end

При любом вызове и выполнении подпрограммы some_routine, инструкции в теле подпрограммы могут ссылаться на rb1, rb2, eb и на присоединенные к ним объекты, если они есть. Это значит, что такие объекты должны быть частью множества достижимых объектов, но не обязательно зависимы от корня. Заметим, для eb всегда есть присоединенный объект, а rb1 и rb2 могут при некоторых запусках иметь значение void.

Локальные сущности ссылочного типа, такие как rb1 и rb2, подобны переменным подпрограммы, которые в предыдущей модели были размещены в стеке. Локальные сущности развернутого типа, как eb, подобны объектам, расположенным в стеке.

Когда завершается очередной вызов some_routine, исчезают сущности rb1, rb2 и eb текущей версии. В результате все присоединенные объекты перестают быть частью множества оригиналов. Это не значит, что они становятся недостижимыми, - они могут тем временем стать зависимыми от корня или других оригиналов.

Допустим, например, что а - это атрибут рассматриваемого класса и что полный текст подпрограммы имеет вид:

some_routine is

local

rb1, rb2: BOOK3

eb: expanded BOOK3

do

create rb1;create rb2

a := rb1

end

На следующем рисунке показаны объекты, создаваемые вызовом some_routine, и ссылки с присоединенными объектами.

Рис. 9.9.  Объекты, присоединенные к локальным сущностям

Когда вызов some_routine завершается, объект О, представляющий цель вызова, все еще доступен (иначе не было бы этого вызова). Поле а этого объекта О в результате вызова присоединено к объекту B1 класса BOOK3, созданного первой инструкцией создания нашей подпрограммы. Поэтому объект B1 остается достижимым по завершении вызова. Напротив, объекты B2 и EB, которые были присоединены к rb2 и eb во время вызова, теперь становятся недостижимыми: в соответствии с текстом процедуры невозможно, чтобы какой-либо другой объект 'запомнил' В2 или ЕВ.

Проблема управления памятью в ОО-модели

Подводя итог предшествующего анализа, определим оригиналы и соответственно достижимые объекты:

Определение: начальные, достижимые и недостижимые объекты

В каждый момент времени выполнения системы множество оригиналов включает:

[x]. Корневой объект системы.

[x]. Любой объект, присоединенный к локальной сущности, или формальному аргументу, выполняемой в данный момент подпрограммы (для функции включается локальная сущность Result).

Любые объекты, прямо или косвенно зависящие от оригиналов, достижимы. Любые другие объекты недостижимы. Память, занятую недостижимыми объектами, можно восстановить, (например, выделить ее другим объектам) сохраняя корректность семантики выполнения программы.

Проблема управления памятью возникает из-за непредсказуемости операций, влияющих на множество достижимых объектов: создание и отсоединение.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату