1 (с решением x = 3), а отрицательные числа как решения уравнений, подобных x + 2 = 1 (с решением x = 1). Но существует простое уравнение, выпадающее из этого списка: каково решение уравнения x2 + 1 = 0? Ни одно из чисел введенных ранее не является его решением, поскольку квадрат любого из них положителен и, будучи прибавлен к 1, не может дать нуля. В значительной мере потому, что математики не хотели признавать, что некоторые уравнения не имеют решения, они ввели понятие мнимого числа i, которое является решением уравнения x2 + 1 = 0; другими словами, x = √(1). Поскольку они — на самом деле, Декарт — считали, что чисел, подобных i и i, умноженному на любое число, в действительности не существует, они и назвали их «мнимыми».

Вскоре стало ясно, что некоторые уравнения, такие как x2 − x + 1 = 0, имеют решения, представляющие собой комбинации действительных и мнимых чисел, в данном случае x = ½ + (½√3)i и x = ½ (½√3) i. Эти комбинации названы комплексными числами; первый член ½ в этом примере является обычным «действительным» числом, а второй член ±(½√3)i является мнимым. Были созданы специальные правила для проведения вычислений с этими двухкомпонентными действительными числами, но они явились естественным расширением правил, которые мы используем для действительных чисел, и не вызывают особых трудностей.

Действительные числа могут быть, как мы видели, упорядочены в прямую линию. Комплексные числа становятся немного менее таинственными, как только мы понимаем, что каждое из них можно изобразить точкой на плоскости, на которой действительная компонента числа равна расстоянию от начала координат по горизонтальной оси, а мнимая компонента равна расстоянию от начала координат по вертикальной оси (рис. 10.5). Другими словами, комплексные числа на самом деле являются парами чисел: комплексное число 1 + 2i, например, является просто двухкомпонентным числом (1, 2), которое мы можем представить точкой с координатами 1 см по горизонтальной оси и 2 см по вертикальной оси. Введем другой способ, посредством которого мы можем представить себе комплексное число в виде костяшки домино, с действительной частью числа на левой половине ее прямоугольника и с мнимой частью на правой половине. В будущем, если вы вынете костяшку домино 4 + 3, представляйте себе ее в виде комплексного числа 4 + 3i. Если вы чувствуете себя дискомфортно среди образов такого рода, не беспокойтесь: комплексные числа, если не считать мимолетных упоминаний, больше не появятся в этой главе.

Рис. 10.5. Комплексное число является двухкомпонентным числом и как таковое может быть представлено точкой на плоскости. Например, комплексное число 2 1i обозначается точкой с координатами 2 единицы по горизонтальной оси и 1 единица вниз по вертикальной оси. Операции с комплексными числами есть просто операции с двухкомпонентными объектами.

В этом разделе я обращусь к двум явно наивным вопросам: сколько существует чисел, и что они такое, в конце концов. Можно подозревать, что ответы будут сложнее вопросов, что в итоге, вероятно, и составляет смысл хорошо поставленного вопроса.

На первый взгляд существует бесконечное число натуральных чисел, ибо в принципе мы можем продолжать счет вечно: одна овца, две овцы, …. Мы говорим, что «мощность» натуральных чисел бесконечна. Изобретательный способ демонстрации мощности приписывается немецкому математику Давиду Гильберту, который появится позже в более серьезном контексте, и называется отель Гильберта. «Отель Гильберта» состоит из бесконечного числа комнат, и однажды ночью все комнаты оказываются занятыми. Прибывает путешественник, не заказавший комнату предварительно. «Нет проблем!» — кричит Гильберт (администратор): он уговаривает всех постояльцев переехать в соседнюю комнату, освобождая таким образом первую комнату и получая возможность устроить в ней вновь прибывшего. На следующую ночь подъезжает бесконечное число путешественников, не заказавших комнату предварительно. «Нет проблем!» — снова кричит обладающий неограниченными ресурсами Гильберт. Он уговаривает всех постояльцев упаковаться и переехать в комнату с номером вдвое большим, чем номер занимаемой ими комнаты, освобождая комнаты с нечетными номерами и получая возможность устроить всех вновь прибывших.

Пока, возможно, все хорошо. Но как насчет рациональных чисел, чисел, получаемых делением одного натурального числа на другое: сколько их существует? «Очевидным» ответом является то, что рациональных чисел больше, чем натуральных, потому что их ужасно много между 0 и 1 (например, 1/4, 1/2, 53/57 и многие другие), столь же много между 1 и 2 (например, 3/2, 5/3, 79/47 и многие другие) и так далее. Забавно, что правильным ответом, однако, будет такой: количество рациональных чисел таково же, как и количество натуральных чисел. Их число бесконечно, столь же бесконечно, как и число натуральных чисел.

Чтобы убедиться в том, что это так, взгляните на рис. 10.6, где я нарисовал таблицу всех рациональных чисел (но показал только малую часть из них). Поверху вправо идут натуральные числа, указывающие числитель дроби, которую мы намереваемся построить, а слева вниз идут натуральные числа, указывающие ее знаменатель. Внутренняя часть таблицы содержит все возможные дроби, получаемые делением одного натурального числа на другое. Здесь будет много повторений, таких как 3/6 и 4/8 оба равны 1/2, но это не имеет значения. Теперь мы можем провести линию, которая пробегает от первой цифры таблицы через все остальные, как показано на рис. 10.6. Затем, продвигаясь вдоль этой линии, будем вести счет 1, 2, … каждой встречающейся дроби. Таким способом все дроби — все рациональные числа — оказываются поставленными во взаимно однозначное соответствие с натуральными числами. Мы никогда не выйдем за пределы натуральных чисел, поэтому количество рациональных чисел таково же, как и количество натуральных чисел, несмотря на то, что они расположены плотнее, чем натуральные числа. Существует бесконечное число рациональных чисел между 0 и 1 и между 1 и 2, но их бесконечное число между 1 и 2 такое же! Короче говоря, мы всегда можем пересчитать рациональные числа — мы говорим, что они счетны — и получить ответ «бесконечность» безотносительно к интервалу чисел, на котором производится счет. Возможно, вы начинаете понимать, что бесконечность является расплывающимся и ускользающим понятием.

Рис. 10.6. Рациональные числа можно поставить в соответствие с натуральными числами, поэтому они являются счетными. В верхнем ряду находятся натуральные числа, указывающие числитель дроби p/q, а слева вниз идут натуральные числа, указывающие ее знаменатель. Продвигаясь по извилистой диагональной линии, мы можем пересчитать рациональные числа (включая их многочисленные повторения).

Алгебраические числа — числа, являющиеся решениями алгебраических уравнений — тоже являются счетными. Вы можете ухватить идею доказательства этого утверждения, заметив, что каждое алгебраическое уравнение состоит из степеней x (выражений, подобных x3), умноженных на целое число (как в 4x3 + 2x − 1 = 0). Поэтому существует взаимно однозначное соответствие между решениями уравнений — алгебраическими числами — и целыми числами, определяющими уравнения. Мы можем заключить, что алгебраические числа являются счетными и, хотя их число бесконечно, мощность их такая же, как у натуральных чисел.

А сколько же иррациональных чисел, чисел, которые не могут быть выражены как отношения

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату