любому другому? — спросил Гамов. — Мы хорошо знаем, как решается эта задача в случае, когда спорят двое завистливых детей. Один из спорщиков делит предмет спора на две части, которые он считает равноценными, а другой получает право выбрать любую из двух частей по своему усмотрению. Как следовало бы обобщить эту задачу о справедливом разделе на случай трех участников спора?
Фон Карман, улыбнувшись, обратился к Стерну:
— Позвольте мне слегка переформулировать задачу, после чего вы, я в этом просто уверен, не сможете не решить ее. Рассмотрим задачу, которая ставится так: каждый из нас должен быть удовлетворен, если ему достанется по крайней мере причитающаяся ему доля сливовицы (т. е. по крайней мере 1/3 содержимого бутылки). Теперь для вас не составит труда решить задачу.
Примечания
1
Принятые в Квазиабабии торговые единицы веса воспроизводят систему единиц, имевших хождение в Англии, США и Странах Содружества до введения метрической системы. В 1 торговом фунте 16 унций (453,59 г). В 1 унции 28,35 г. (Унция делилась на 16 драхм {по 1,77 г), драхма — на 3 скрупулы (по 0,59 г) и скрупула — на 10 гран (но 0,059 г)). —
2
Великий султан предполагает в своих рассуждениях, что соотношение мальчиков и девочек равно. Это не вполне корректно с точки зрения биологии. —
3
Сюжет этой истории сообщил одному из нас (Г. Г.) проф. Виктор Амазаспович Абмарцумян. (Академик В. А. Амбарцумян — выдающийся астрофизик. —
4
Сюжет этой истории сообщил одному из нас (Г. Г.) проф. Альберт Сент-Дьерди.
(Известный биохимик, один из основоположников биоэнергетики. —
5
В предлагаемом варианте объяснение непосредственно применимо и к задаче о лифтах, о которой шла речь в прологе.
6
Так как для рассуждения важны не абсолютные, а относительные расстояния, единицы длины не существенны (при условии, что оба расстояния измеряются в одних и тех же единицах). —