други вещества от Космоса, трябва да установим с какво ще се характеризира всяко съединение. Има две възможности: или да изчислим теоретично характеристиката на молекулите на различните вещества, което дори и при помощта на компютрите ще трае дълги години, или лабораторно да изготвим евентуалните вещества и след това да изследваме какви дължини на вълната поглъщат или излъчват.
Проф. Чарлз Таунс, лауреат на Нобелова награда за откриването на лазера и директор на радиофизическата лаборатория при Калифорнийския университет в Бъркли, избра втория път. Публикуваните през 1955 г. резултати не бяха много радващи. Наистина, в междузвездното пространство може би съществуват много сложни вещества… Само че ние можем да ги идентифицираме единствено в зоната на сантиметровите и милиметровите вълни. А това ще е доста трудно. Докато не е задължително повърхността на радиотелескоп, работещ на дециметрови вълни, да бъде абсолютно гладка, за по-малки дължини на вълните чашите на антените, понякога с диаметър над 40 м, трябва да са направени с точност до части от милиметъра.
Експериментите обаче показаха, че хидроксилът, най-елементарното съединение на кислорода и водорода, може да се регистрира и със сегашната техника. Това вещество трябва да излъчва на вълна 18 см — с 3 см по-ниско от водорода.
Няколко групи астрофизици започнаха търсенето — в началото без никакъв успех. Едва през 1963 г. групата на д-р Сандър Уайнреб от Масачузетския технологически институт в Кембридж открива хидроксил на фона на силния радиоизточник Касиопея. А с помощта на 25-метров телескоп те установиха, че това вещество поглъща излъчване. Скоро от Калифорнийския университет пристигна една изумителна новина. Елена Гундерман със сътрудниците си откри силно излъчване на вълна 18 см от галактичния радиоизточник W 49. Не може да бъде хидроксил — веднага реагираха астрономите, — излъчването е прекалено силно за него. Сигурно сме открили някакво неизвестно досега вещество… Ето защо временно го нарекоха мистерий. По-нататъшните изследвания показаха, че това все пак е хидроксил, само че неговите съставни части — кислород и водород — са възникнали в много рядка среда, непозната в земни условия. Затова и самото съединение изглежда така необикновено.
През следващите пет години никой не потърси ново вещество във Вселената. Всички се готвеха за ново настъпление. Инженерите и техниците строяха радиотелескопи за по-малки дължини на вълните, усъвършенствуваха усилвателите и компютрите…
И точно когато бяха пуснати в действие първите нови апаратури, д-р Сюдбек изложи хипотезата за създаването на сложни органични молекули в пространството. И някои други астрофизици започнаха да приемат тази идея.
През 1968 г. проф. Таунс направи нова серия открития. Групата на Таунс работи с нов радиотелескоп с диаметър 610 см в Рединг, на западното крайбрежие. През декември 1968 г. откриха амоняк в зоната 1,25 см в съзвездието Стрелец. Според Таунс това е доказателство, че молекулите са всеобщо явление и се срещат навсякъде и в междузвездното пространство, така че ще има още много друга открития. Един месец по- късно на същата вълна калифорнийските учени откриха и вода в мъглявината Орион. Радиоастрономите се шегуват, че в междузвездното пространство вали дъжд.
Двете известия на Таунс потвърждават хипотезата на Сюдбек. Наличието на амоняк и водни пари в междузвездното пространство е пряко свидетелство, че там има и по-сложни вещества.
Да, в пространството има такива вещества! Ние намерихме формалдехид, първото органично вещество от космически произход — отбелязаха през март 1969 г. д-р Дейвид Бул и д-р Люис Снайдър от Националната радиоастрономическа обсерватория в Грийн Банк. С помощта на колегите си д-р Бенджамин Цукерман от Мерилендския университет и д-р Патрик Палмър от Чикагския университет те намират формалдехид благодарение на 43-метровия радиотелескоп в Грийн Банк на вълна 6,2 см. Постепенно те идентифицират това вещество на 15 места в Галактиката. Скоро откритието се потвърди и от други обсерватории.
Това беше голям шок. Макар съществуването на сложни молекули във Вселената да се очакваше, някои специалисти не искаха да го повярват. То прекалено много противоречеше на всички досегашни представи и никой не очакваше, че първото вещество ще бъде открито така лесно и бързо. Изнена-даха се не само астрономите, но преди всичко биолозите и биохимиците. Огромните облаци от формалдехид, от които трябва да са образувани спиралните рамена на Млечния път, изведнъж срутиха всички досегашни представи за изключителността на живота на Земята.
Много обсерватории започнаха да търсят нови органични вещества. Но във втората половина на 1969 г. и началото на следващата щастието им измени. Картата на Млечния път се изпълни само с нови облаци формалдехид. През пролетта на 1970 г. сътрудниците от лабораторията на фирмата Бел инсталираха нов усилвател в Националната радиоастрономическа обсерватория в Аризонския Кит Пийк. И на 4 април специалистите д-р Пензиас и д-р Уилсън успяха да открият първо въглероден окис, а след това — и циан. В това време Бул и неговите колеги се съветваха с химици, физици и екзобиолози. Те искаха да си изяснят значението на своето откритие и обобщят условията, при които да продължат своите изследвания. „Във Вселената могат да съществуват и сложни аминокиселини, чието наличие е трудно да се докаже“ — твърди физико-химикът Снайдър. Пред астрохимиците изникна цяла редица въпроси. Как се образува формалдехидът в междузвездното пространство? Къде възникват — на повърхността на частиците от мъглявината или направо в пространството — реакции, които протичат в изключително сурови условия — студ около 250° и ниска гъстота, където на 1 куб.см се падат по-малко от 10 молекули?
Палмър изказа предположение, че междузвездна химична реакция протича при сблъскването на мъглявините един път на милион години, а д-р Б. Дън е на мнение, че тези процеси са резултат от излъчването на най-близките звезди.
През юни 1970 г. групата на Бул се върна в Кит Пийк. На 15 юни те откриха лек, а по-късно и тежък циановодород в пространството. Една седмица след това д-р Б. Търнър от Грийн Банк откри цианоацетилен.
Откритията следваха едно след друго: метилов алкохол, мравчена киселина, бис- пиридилмагнезийтетрабензопорфин, ацеталдехид, силиций… Днес вече знаем около 50 междузвездни вещества, три четвърти от които са органични, някои значително сложни, дори седематомни. И много от тях участвуват в състава на „предбиологичната супа“. Наистина методите за идентифициране не изключват и опасността от грешки, но това не оказва съществено влияние върху цялата серия от открития.
„Химията на Космоса изглежда необикновена — каза след откриването на формалдехида д-р Дън. — Но в действителност необикновена е земната химия.“
Следващите открития само подвърдиха това. Саган и д-р Н. Кеър предполагат, че ултравиолетовите и космичните лъчи непрекъснато въздействуват на молекулите на амоняка, водата, формалдехида, циановодорода и метана така, че се създават и много сложни вещества като висшите алдехидн и захарите. Това се потвърждава и от експериментите на д-р Гоуст Уолин и д-р Дейвид Ериксън от Колумбийския университет в Ню Йорк. На 29. X. 1871 г. в сп. „Нейчър“ бе поместена тяхната статия „Аминокиселини, синтезирани от газове, намерени в междузвездното пространство“. Двамата биохимици използуваха класически методи за моделиране възникването на живота на едноклетъчните аминокиселини от първични органични вещества. Те напълват голяма епруветка с пари на амоняк, метилов алкохол, мравчена киселина и формалдехид и я облъчват с ултравиолетови лъчи. Макар че при този процес за първи път се изключва влиянието на водата, след 25 дни в епруветката се образуват редица аминокиселини. „Предвид на това, че в междузвездното пространство бяха намерени амоняк, метилов алкохол, мравчена киселина и формалдехид, нашите открития подкрепят идеята, че аминокиселините могат да се създават в пространството и без вода — пишат двамата американски учени в «Нейчър». — Въпреки че ни липсват убедителни доказателства за наличието на каквито и да е местни биологични вещества на лунната повърхност, нашите заключения дават основание да се смята, че на Луната могат да се образуват аминокиселини. Макар че условията на нашите експерименти се различават от условията в междупланетното пространство и на Луната, ние вярваме, че нашите открития могат да послужат на междузвездната химия…“
По друг повод те споделят: „Получените резултати за първи път показват, че аминокиселините могат да се получат при експеримент, чиито всички реакции преднамерено се осъществяват в газообразна среда. Естествено, гъстотата на газовете, които използувахме в лабораторията, беше много по-висока от гъстотата на междузвездните облаци. Вместо за няколко дни подобна реакция във Вселената трае може би хиляди години, но важното е, че може да протече с газове, както в нашия случай.“