концами, называемые открытыми струнами.

100

Понятие «точный» в смысле данной главы (например, «точное» уравнение движения Земли) в действительности относится к точному предсказанию некоторой физической величины в рамках выбранного теоретического формализма. До тех пор, пока у нас не будет истинной окончательной теории (возможно, она уже есть, а возможно, её вообще не будет) все наши теории сами являются приближениями реальности. Но это понятие приближения не имеет никакого отношения к приближениям, рассматриваемым в данной главе. Здесь нас интересует тот факт, что в рамках выбранной теории часто сложно или невозможно сделать точные предсказания. Вместо этого приходится искать эти предсказания с помощью приближённых методов в рамках теории возмущений.

101

Эти диаграммы являются струнными вариантами так называемых диаграмм Фейнмана, предложенных Ричардом Фейнманом для вычислений по теории возмущений в квантовой теории поля точечных частиц.

102

Точнее, каждая пара виртуальных струн, т. е. каждая петля конкретной диаграммы, приводит (наряду с другими более сложными слагаемыми) к мультипликативному вкладу, пропорциональному константе связи струны. Чем больше петель, тем выше показатель степени константы связи струны в ответе. Если константа связи струны меньше 1, повторные умножения сделают вклад следующих петель меньше, в противном случае эти вклады будут того же порядка или будут растут с числом петель.

103

Для читателя, осведомлённого в математике, отметим, что в силу этого уравнения пространство- время должно иметь Риччи-плоскую метрику. Если разбить пространство-время на прямое произведение четырёхмерного пространства Минковского и шестимерного компактного кэлерова многообразия, то обращение в нуль кривизны Риччи будет эквивалентно требованию того, что кэлерово многообразие должно быть многообразием Калаби–Яу. Вот почему многообразия Калаби–Яу так важны в теории струн.

104

Разумеется, ничто не гарантирует правомочность таких косвенных подходов. Например, некоторые лица несимметричны, а в физике могут быть законы, разные в далеко удалённых частях Вселенной (это вкратце обсуждается в главе 14).

105

Для знающего читателя должно быть ясно, что для справедливости этих утверждений потребуется так называемая N = 2 суперсимметрия.

106

Более точно, если обозначить константу связи O-гетеротической струны символом gОГ, а константу связи струны типа I символом gI, то соотношение между константами, для которых состояния в данных физических теориях эквивалентны, имеет вид gОГ = 1/gI или gI = 1/gОГ. Если одна из констант связи мала, то другая константа велика, и наоборот.

107

Это близкий аналог рассмотренной выше (R, 1/R) дуальности. Если обозначить константу связи струны типа IIB через gIIB, то кажется правдоподобной гипотеза, что значения констант gIIB и 1/gIIB приводят к одинаковым физическим результатам. Если gIIB велико, то 1/gIIB мало, и наоборот.

108

Если свёрнуты все измерения, кроме четырёх, то в теории с двенадцатью измерениями и более обязательно возникнут безмассовые частицы со спином, большим 2, что неприемлемо ни с теоретической, ни с экспериментальной точек зрения.

109

Заметным исключением явилась важная работа 1987 г. Даффа, Поля Хоува, Такео Инами и Келлога Стелле, в которой более ранние наблюдения Эрика Бергшоеффа, Эргина Сезгина и Таунсенда использовались для обоснования того, что десятимерная теория струн может иметь глубокую связь с 11- мерной теорией.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату