более общим образом, как видно из обсуждения ГЛ в примечаниях к строчкам 21-28, о мнимой части аргумента дзета-функции).

Строка 9. Харальд Бор (глава 14.iii) и Эдмунд Ландау доказали в 1913 году важную теорему о функции S (см. главу 22.iv), которая гласит, что если дзета-функция имеет лишь конечное число нулей вне критической прямой, то функция S(t) неограничена, когда t стремится к бесконечности. Упоминавшееся в главе 22.iv доказательство Сельберга 1946 года, что S(t) неограничена, — более сильный результат, поскольку не требует указанного условия. По поводу Крамера см. главу 20.vii. Помимо разработки упомянутой там «вероятностной модели» для распределения простых чисел Крамер также доказал и один менее значительный результат о функции S: если ГЛ (см. примечания к строчкам 21-28) верна, то S(t)/ln t стремится к нулю, когда t стремится к бесконечности. По поводу Литлвуда и Харди см. главу 14; по поводу Титчмарша — главу 16.v.

Строки 13-16. Глава 14.v.

Строка 17. Чтобы попасть в размер, термин Li здесь надо произносить как как ell-eye (в оригинале, и как «ли» в переводе. — Примеч. перев.). Далее автор песни обсуждает остаточный член ? (x) ? Li(x), который мы подробно рассматривали в главе 21.

Строка 18. «Как там с порядком P — неизвестно» означает, что «P есть ? большое от… от чего? — неизвестно». По поводу ? большого см. главу 15.ii-iii; при этом имеются в виду большие значения x.

Строки 19-20. Если бы удалось доказать, что ? (x) ? Li(x) = ?(vx•ln x) (другими словами, на разность имеется ограничение, т.е. «потолок»), то и ГР была бы доказана. В этом заключается результат, обратный результату фон Коха 1901 года, приведенному в главе 14.viii. Там это не упомянуто, но если формула фон Коха верна, то верна и ГР. Они следуют друг из друга.

Строки 21-28. Следующие несколько строк целиком посвящены гипотезе Линделёфа (ГЛ) — знаменитому предположению в теории дзета-функции. Его гипотеза касается роста дзета-функции в вертикальном направлении — т.е. вверх по вертикальной прямой в комплексной плоскости.

Линделёф, записав аргумент дзета-функции в виде ? + ti, задался таким вопросом: пусть задана вещественная часть ? (это, кстати, строчная греческая буква сигма); что можно сказать о величине ?(? + ti), когда t (мнимая часть аргумента) изменяется от нуля до бесконечности? «Величина» здесь понимается в смысле модуля, который мы определили в главе 11.v; другими словами, это означает |?(? + ti)| — расстояние от значения дзета-функции до точки нуль. Это вещественное число, так что для всякой заданной ? и аргумент t, и значение |?(? + ti)| — вещественные числа. Следовательно, можно нарисовать график. На рисунках от П1 до П8 показаны графики для некоторых характерных значений ?; эти графики иллюстрируют суть дела лучше всяких слов.

Рисунок П1.

Рисунок П2.

Рисунок П3.

Рисунок П4.

Рисунок П5.

Рисунок П6.

Рисунок П7.

Рисунок П8.

Обратим внимание на нетривиальные нули дзета-функции на рисунке П5. Стоит обратить внимание и на оживление, которое по сравнению с остальными демонстрируют рисунки от П4 до П6. Все интересное, что может случиться с дзета-функцией, происходит в критической полосе.

Кроме того, отметим некоторые знакомые значения при t = 0: 1/2 на рисунке П4 (что отвечает ?(0) = ?1/2 на рисунке 9.3, поскольку, разумеется, |?1/2| есть просто 1/2); бесконечность на рисунке П6 (расходимость гармонического ряда, глава 1.iii); 1,644934… на рисунке П7 (решение базельской задачи, глава 5.i); и 1,202056… на рисунке П8 (число Апери, глава 5.vi). Нулевое значение функции при t = 0 на рисунке П2 есть вещественный, тривиальный нуль дзета-функции (глава 9.vi). То, что кажется нулями на рисунках П1 и П3, на самом деле нулями не является; реально принимаемые там значения при t = 0 слишком малы, чтобы их можно было заметить. (Они соответственно равны 0,0083333… и 0,0833333….).

ГЛ — это утверждение об ? большом (см. главу 15.ii) для этих графиков.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату