Where are the zeros of zeta of s? Where are the zeros of zeta of s? G.F.B. Riemann has made a good guess: «They're all on the critical line,» stated he, «And their density's one over two pi log T». This statement of Riemann's has been like a trigger, And many good men, with vim and with vigor, Have attempted to find, with mathematical rigor, What happens to zeta as mod t gets bigger. The efforts of Landau and Bohr and Cramer, Hardy and Littlewood and Titchmarsh are there. In spite of their effort and skill and finesse, In locating the zeros there's been no success. In 1914 G.H. Hardy did find, An infinite number that lie on the line. His theorem, however, won't rule out the case, That there might be a zero at some other place. Let P be the function pi minus Li; The order of P is not known for x high. If square root of x times log x we could show, Then Riemann's conjecture would surely be so. Related to this is another enigma, Concerning the Lindelof function mu sigma, Which measures the growth in the critical strip; On the number of zeros it gives us a grip. But nobody knows how this function behaves, Convexity tells us it can have no waves. Lindelof said that the shape of its graph Is constant when sigma is more than one-half. Oh, where are the zeros of zeta of s? We must know exactly. It won't do to guess. In order to strengthen the prime number theorem, The integral's contour must never go near 'em. Andre Weil has improved on old Riemann's fine guess By using a fancier zeta of s. He proves that the zeros are where they should be, Provided the characteristic is p. There's a moral to draw from this long tale of woe That every young genius among you must know: If you tackle a problem and seem to get stuck, Just take it mod p and you'll have better luck. Примечания Мотив. Sweet Betsy from Pike — песня, которую поют на этот мотив в Америке. Однако мелодия старше, чем слова. Впервые она прозвучала в английской песенке Villikens and his Dinah[216], популярной в середине XIX века. (Из этой песенки, кстати, взято имя кошки в книгах Льюиса Кэрролла об Алисе. Villikens and his Dinah была любимой песней Алисы Лидделл — девочки, которая вдохновила его на написание книг, и у нее и в самом деле была кошка по имени Дина.) Если ваше обучение в Британии включало в себя членство в школьном клубе регби[217], то вы, скорее всего, распознаете эту мелодию как мелодию известной печальной баллады, начинающейся словами О Father, О Father, I've come to confess. I've left some poor girl in a hell of a mess.[218]
Строка 1. См. главу 5.vii.
Строка 2. Полное имя Римана было Георг Фридрих Бернхард Риман (глава 2.iii). Насколько известно, он всегда пользовался только именем Бернхард.
Строка 3. По поводу «критической прямой» (она же критическая линия) см. главу 12.iii, рисунок 12.1.
Строка 4. Это следует сравнить с утверждением из главы 13.viii, что на высоте T вдоль критической прямой средний интервал между нулями ~2?/ln (T/2?). Это означает, что на единицу длины вдоль прямой приходится ~ (1/2?)/ln (T/2?) нулей. Это автор песни и имеет в виду под «плотностью». Заметим, что, согласно правилам обращения с логарифмами, ln (T/2?) равен ln T ? ln (2?), т.е. ln Т ? 1,83787706…. Умножив это на 1/2?, получим (1/2?)ln T ? 0,29250721…. По мере роста T растет (хотя и намного медленнее) и ln T, так что слагаемое величины 0,29250721… становится совершенно несущественным. Следовательно, плотность равна «один-на-два-пи эль-эн T».
Строка 8. В оригинале обозначение mod t использовано для модуля числа t, определенного в главе 11.v. Когда, как в данном случае, под t понимается вещественное число, mod t — в нормальных обозначениях |t| — выражает просто величину t без учета знака.[219] Как отмечалось в главе 16.iv, t (или T) — довольно стандартное обозначение в теории дзета-функции, когда говорят о больших высотах вдоль критической прямой (или,