7,389056098931 | |
3 | 20,085536923188 |
4 | 54,598150033144 |
(здесь точность — 12 знаков после запятой). Основной принцип, конечно, сохраняется — аргументы (левая колонка) растут каждый раз за счет добавления 1; при этом значения в правой колонке каждый раз умножаются на
А если наоборот? Представим себе функцию, основанную на таком правиле: когда аргумент растет «по умножению», значения растут «по сложению». Что за функция получится?
Здесь мы вступаем в царство
С точки зрения принятого нами подхода, когда функции показаны в виде таблиц, обращение просто означает отражение таблицы, при котором ее правая часть становится левой, а левая — правой. Правда, это быстрый способ нажить себе неприятности. Возьмем функцию возведения в квадрат — скорее всего, первую нетривиальную функцию, с которой вы познакомились в школе. Чтобы возвести число в квадрат, мы умножаем его само на себя. Вот соответствующая таблица:
?3 | 9 |
?2 | 4 |
?1 | 1 |
0 | 0 |
1 | 1 |
2 | 4 |
3 | 9 |
(Я полагаю, что вы помните о правиле знаков, так что ?3 умножить на ?3 дает 9, а не ?9).[19] А теперь поменяем колонки местами и получим обратную функцию:
9 | ?3 |
4 | ?2 |
1 | ?1 |
0 | 0 |
1 | 1 |