доказательства превратились в объекты изучения. Ряд самых важных теорем в математике XX века касается полноты математических систем (Курт Гедель, 1931) и разрешимости математических пропозиций (Алонсо Черч, 1936).
Но эти основополагающие изменения пока еще, даже в начале XXI века, не нашли своего отражения в математическом образовании (по крайней мере на уровне знаний, необходимых для поступления в университет). Не исключено, что это вообще невозможно. Математика — предмет, где знания накапливаются. Каждое новое открытие что-то добавляет к общему знанию, но ничто никогда оттуда не изымается. Один раз установленная математическая истина навечно остается истиной, и каждое следующее поколение обучающихся должно ее усвоить. Такая истина никогда (ну, практически никогда) не становится неверной или несущественной — хотя и может выйти из моды или же оказаться частным случаем некоторой более общей теории. (Заметьте при этом, что в математике «более общая» не обязательно означает «более сложная». В проективной геометрии имеется теорема Дезарга, которую легче доказать в трех измерениях, чем в двух. Теорема, которую легче доказать в размерности четыре, чем в размерности три, содержится в главе 7 книги Г.С.М. Кокстера «Правильные политопы».[108])
Молодые и толковые американцы, приступающие к изучению математики в качестве предмета основной специализации на первом курсе в колледже, будут изучать математику, по существу, в том же виде, в каком она была известна молодому Гауссу — возможно, с короткими экскурсами в некоторые области, развитые в более позднее время. Поскольку моя книга нацелена примерно на такой уровень читателей, та математика, о которой здесь рассказывается, в сильной степени пропитана духом XIX века. В повествовательных главах я собираюсь рассмотреть все достижения вплоть до сегодняшнего дня, предлагая для них лучшие объяснения, которые я только смогу придумать, но математические главы этой книги нечасто будут переходить рубеж 1900 года.
История Гипотезы Римана в XX веке — это история навязчивой идеи, хватку которой рано или поздно почувствовало большинство великих математиков этой эпохи. Примеры одержимости этой идеей имеются в изобилии, как будет видно из нескольких последующих глав. Сначала обратимся к отдельному примеру. Давид Гильберт, как уже рассказывалось, поместил Гипотезу Римана восьмой в списке из 23 проблем, на которых математикам XX столетия предстояло сконцентрировать свои усилия. Это было в 1900 году, до того как навязчивая идея взяла свое. Его умонастроение несколько лет спустя видно из следующей истории, рассказанной его младшим коллегой Джорджем Пойа:
Про германского императора XIII века Фридриха Барбароссу, умершего во время Крестового похода, немцы в массе своей полагали, что он по-прежнему жив, погруженный в сон в пещере глубоко в горах Кифхойзер, готовый к тому, чтобы пробудиться и восстать когда он понадобится Германии. Кто-то спросил Гильберта, что бы он сделал, если бы, подобно Барбароссе, восстал к жизни после сна длиною в несколько столетий. Гильберт ответил: «Я бы спросил, доказал ли кто-нибудь Гипотезу Римана».
А ведь речь идет не о периоде, скудном на мощные проблемы, бросающие вызов ученым. Последняя теорема Ферма (гласящая, что не существует целочисленных[109] решений уравнения
Навязчивая идея захватывала различных математиков различными способами, сообразно их математическим наклонностям. Поэтому в течение столетия развивалось несколько направлений — различных подходов к исследованию Гипотезы, у истоков каждого из которых стояла какая-то одна личность, затем передававшая эстафету другим, причем пути этих исследований порой пересекались и перепутывались друг с другом. Например, в рамках
Исследование простых чисел самих по себе тем временем шло своим чередом, без особенных приложений к Гипотезе, но все же с часто выражаемой надеждой, что новые результаты о распределении простых чисел прольют свет на причину, по которой Гипотеза на самом деле верна — или, если уж так случится, неверна. Ключевыми продвижениями здесь явились развитие в 1930-х годах вероятностной модели для распределения простых чисел и данное в 1949 году Сельбергом «элементарное» доказательство Теоремы о распределении простых чисел, рассмотренной в главе 8.iii.
Рассказывая об этих достижениях, я буду стараться, чтобы в каждый данный момент было ясно, какое из направлений рассматривается, хотя временами ради поддержания общей хронологии рассказа придется перескакивать с одного на другое. Начнем с небольшого вступительного замечания о «вычислительном» направлении, ибо оно проще всего для понимания нематематиками. Каковы в реальности значения — числовые значения — нетривиальных нулей дзета-функции? Как их можно вычислить? И если взять их все вместе, то каковы будут их статистические свойства?
Первые конкретные сведения о нулях были получены датским математиком Йоргеном Грамом, вскользь упоминавшимся в главе 10. Будучи математиком-любителем, не работавшим ни в каком университете (а работавшим, подобно поэту Уоллесу Стивенсу, управляющим страховой компанией), Грам, похоже, в течение нескольких лет забавлялся с методами, позволяющими реально вычислять положения нетривиальных нулей (происходило это, понятно, задолго до эры компьютеров). В 1903 году, остановившись на достаточно эффективном методе, он опубликовал список 15 «первых» нулей — тех, которые расположены выше вещественной оси и лежат ближе всего к ней. На рисунке 12.2 грамовские нули показаны жирными точками на критической прямой. Его список, содержавший кое-какие неточности в последних из приведенных знаков после запятой, начинался как
Рисунок 12.2. Грамовские нули.
Каждый из выписанных нулей, как видно, имеет вещественную часть, равную одной второй.[110] (А кроме того, существование каждого из корней предполагает и