доказательства превратились в объекты изучения. Ряд самых важных теорем в математике XX века касается полноты математических систем (Курт Гедель, 1931) и разрешимости математических пропозиций (Алонсо Черч, 1936).

Но эти основополагающие изменения пока еще, даже в начале XXI века, не нашли своего отражения в математическом образовании (по крайней мере на уровне знаний, необходимых для поступления в университет). Не исключено, что это вообще невозможно. Математика — предмет, где знания накапливаются. Каждое новое открытие что-то добавляет к общему знанию, но ничто никогда оттуда не изымается. Один раз установленная математическая истина навечно остается истиной, и каждое следующее поколение обучающихся должно ее усвоить. Такая истина никогда (ну, практически никогда) не становится неверной или несущественной — хотя и может выйти из моды или же оказаться частным случаем некоторой более общей теории. (Заметьте при этом, что в математике «более общая» не обязательно означает «более сложная». В проективной геометрии имеется теорема Дезарга, которую легче доказать в трех измерениях, чем в двух. Теорема, которую легче доказать в размерности четыре, чем в размерности три, содержится в главе 7 книги Г.С.М. Кокстера «Правильные политопы».[108])

Молодые и толковые американцы, приступающие к изучению математики в качестве предмета основной специализации на первом курсе в колледже, будут изучать математику, по существу, в том же виде, в каком она была известна молодому Гауссу — возможно, с короткими экскурсами в некоторые области, развитые в более позднее время. Поскольку моя книга нацелена примерно на такой уровень читателей, та математика, о которой здесь рассказывается, в сильной степени пропитана духом XIX века. В повествовательных главах я собираюсь рассмотреть все достижения вплоть до сегодняшнего дня, предлагая для них лучшие объяснения, которые я только смогу придумать, но математические главы этой книги нечасто будут переходить рубеж 1900 года.

VI.

История Гипотезы Римана в XX веке — это история навязчивой идеи, хватку которой рано или поздно почувствовало большинство великих математиков этой эпохи. Примеры одержимости этой идеей имеются в изобилии, как будет видно из нескольких последующих глав. Сначала обратимся к отдельному примеру. Давид Гильберт, как уже рассказывалось, поместил Гипотезу Римана восьмой в списке из 23 проблем, на которых математикам XX столетия предстояло сконцентрировать свои усилия. Это было в 1900 году, до того как навязчивая идея взяла свое. Его умонастроение несколько лет спустя видно из следующей истории, рассказанной его младшим коллегой Джорджем Пойа:

Про германского императора XIII века Фридриха Барбароссу, умершего во время Крестового похода, немцы в массе своей полагали, что он по-прежнему жив, погруженный в сон в пещере глубоко в горах Кифхойзер, готовый к тому, чтобы пробудиться и восстать когда он понадобится Германии. Кто-то спросил Гильберта, что бы он сделал, если бы, подобно Барбароссе, восстал к жизни после сна длиною в несколько столетий. Гильберт ответил: «Я бы спросил, доказал ли кто-нибудь Гипотезу Римана».

А ведь речь идет не о периоде, скудном на мощные проблемы, бросающие вызов ученым. Последняя теорема Ферма (гласящая, что не существует целочисленных[109] решений уравнения xn + yn = zn при n > 2, и доказанная в 1994 году) еще оставалась открытой, как и Проблема четырех красок (о том, что четырех красок достаточно для раскрашивания любой карты на плоскости таким образом, что никакие две соседние области не будут выкрашены одним и тем же цветом, — доказана в 1976 году) и гипотеза Гольдбаха (согласно которой любое четное число, большее двойки, представимо в виде суммы двух простых чисел и которая все еще не доказана), а также множество менее значимых, но давно ждущих своего решения задач, гипотез и головоломок. Гипотеза Римана возвышалась над ними всеми.

Навязчивая идея захватывала различных математиков различными способами, сообразно их математическим наклонностям. Поэтому в течение столетия развивалось несколько направлений — различных подходов к исследованию Гипотезы, у истоков каждого из которых стояла какая-то одна личность, затем передававшая эстафету другим, причем пути этих исследований порой пересекались и перепутывались друг с другом. Например, в рамках вычислительного направления усилия математиков были направлены на явное вычисление все большего и большего количества нулей и на усовершенствованию методов для таких вычислений. Было и алгебраическое направление, инициированное Эмилем Артином в 1921 году в попытке доказать Гипотезу Римана фланговым маневром через раздел алгебры, называемый теорией полей; позднее в том же столетии замечательная встреча двух людей, о которой я расскажу в свое время, привела к возникновению физического направления, соотносящего Гипотезу с математикой, управляющей физикой элементарных частиц. И пока все это продолжалось, специалисты по аналитической теории чисел не прекращали своих усилий, продолжая заложенную самим Риманом традицию по изучению Гипотезы средствами теории функций комплексной переменной.

Исследование простых чисел самих по себе тем временем шло своим чередом, без особенных приложений к Гипотезе, но все же с часто выражаемой надеждой, что новые результаты о распределении простых чисел прольют свет на причину, по которой Гипотеза на самом деле верна — или, если уж так случится, неверна. Ключевыми продвижениями здесь явились развитие в 1930-х годах вероятностной модели для распределения простых чисел и данное в 1949 году Сельбергом «элементарное» доказательство Теоремы о распределении простых чисел, рассмотренной в главе 8.iii.

Рассказывая об этих достижениях, я буду стараться, чтобы в каждый данный момент было ясно, какое из направлений рассматривается, хотя временами ради поддержания общей хронологии рассказа придется перескакивать с одного на другое. Начнем с небольшого вступительного замечания о «вычислительном» направлении, ибо оно проще всего для понимания нематематиками. Каковы в реальности значения — числовые значения — нетривиальных нулей дзета-функции? Как их можно вычислить? И если взять их все вместе, то каковы будут их статистические свойства?

VIII.

Первые конкретные сведения о нулях были получены датским математиком Йоргеном Грамом, вскользь упоминавшимся в главе 10. Будучи математиком-любителем, не работавшим ни в каком университете (а работавшим, подобно поэту Уоллесу Стивенсу, управляющим страховой компанией), Грам, похоже, в течение нескольких лет забавлялся с методами, позволяющими реально вычислять положения нетривиальных нулей (происходило это, понятно, задолго до эры компьютеров). В 1903 году, остановившись на достаточно эффективном методе, он опубликовал список 15 «первых» нулей — тех, которые расположены выше вещественной оси и лежат ближе всего к ней. На рисунке 12.2 грамовские нули показаны жирными точками на критической прямой. Его список, содержавший кое-какие неточности в последних из приведенных знаков после запятой, начинался как

1/2 + 14,134725i, 1/2 + 21,022040i, 1/2 + 25,010856i, ….

Рисунок 12.2. Грамовские нули.

Каждый из выписанных нулей, как видно, имеет вещественную часть, равную одной второй.[110] (А кроме того, существование каждого из корней предполагает и

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату