существование сопряженного, расположенного под вещественной осью: 1/2 ? 14,134725i и т.д. Я буду считать этот факт само собой разумеющимся и не буду упоминать его специально до главы 21, когда он снова станет важным.) Поэтому в тех пределах, докуда они простираются, эти нули подтверждают справедливость Гипотезы Римана. Однако простираются они не слишком далеко. Известным фактом про число нулей — неявно содержавшимся в работе Римана 1859 года — было то, что число их бесконечно. Все ли они имеют вещественную часть, равную одной второй? Риман полагал, что дело так и обстоит — в этом-то и состояла его мощная Гипотеза. Но в тот момент никто не знал, как к этому подступиться.

После появления списка Грама математики, должно быть, взирали на него со священным ужасом. Тайна распределения простых чисел, которая удерживала на себе внимание математиков со времен легендарного Гаусса, оказалась каким-то образом заключенной в перечне чисел: 1/2 + 14,134725i, 1/2 + 21,022040i, 1/2 + 25,010856i, …. Но как?! Их вещественные части, без сомнения, равняются одной второй, как и предполагал Риман; однако мнимые части не проявляют никакого очевидного порядка или системы.

Я только что сказал: «Математики, должно быть…» Мне надо было бы сказать: «Несколько математиков в континентальной Европе, должно быть…» Одержимость Гипотезой Римана, захватившая математиков в течение XX столетия, в 1905 году только набирала силу. Во многих частях света о ней толком и не знали. В следующей исторической части нашего повествования мы с читателем отправимся в Англию, в период эдвардианского расцвета ее имперской славы. Но сначала позвольте показать вам, как же на самом деле выглядит дзета-функция.

Глава 13. Муравей Арг и муравей Знач

I.

Предположим, что, как я и пытался вас убедить, комплексные числа представляют собой простое и понятное расширение обычных вещественных чисел и подчиняются всем обычным правилам арифметики с тем единственным добавлением, что i2 = ?1; кроме того, вспомним, что функции занимаются тем, что превращают числа из одной области — своей области определения — в числа из другой области; так вот, есть ли какая-нибудь причина, которая препятствует существованию функций от комплексных чисел? Никаких таких причин нет.

Функция возведения в квадрат, например, прекрасно работает для комплексных чисел в соответствии с правилами умножения. Скажем, квадрат числа ?4 + 7i есть (?4 + 7i)?(?4 + 7i), что равно 16 ? 28i ? 28i + 49i2, т.е. ?33 ? 56i. В таблице 13.1 показан «моментальный снимок» функции возведения в квадрат для некоторых случайным образом выбранных комплексных чисел. [111]

z z2
?4 + 7i ?33 ? 56i
1 + i 2i
i ?1
0,174 ? 1,083i ?1,143 ? 0,377i

Таблица 13.1. Функция возведения в квадрат.

Читателю, возможно, нелегко в это поверить, но изучение «функций комплексной переменной» представляет собой одно из наиболее элегантных и прекрасных направлений в высшей математике. Области определения всех функций, знакомых нам из школьной математики, легко расширяются на все, или почти все, комплексные числа. Например, в таблице 13.2 приведен «моментальный снимок» показательной функции для некоторых комплексных чисел.

z ez
?1 + 2,141593i ?0,198766 + 0,30956i
3,141593i ?1
1 + 4,141593i ?1,46869 ? 2,28736i
2 + 5,141593i 3,07493 ? 6,71885i
3 + 6,141593i 19,885 ? 2,83447i

Таблица 13.2. Показательная функция.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату