IV.

Статья Монтгомери об интервалах между нулями дзета-функции была опубликована в журнале Американского математического общества в 1973 году. Она начинается словами «На протяжении данной статьи мы принимаем справедливость Гипотезы Римана (ГР)…». В этом нет ничего особенного. К 1973 году множество математических статей состояли из теорем, в которых предполагалась справедливость Гипотезы.[170] На сегодняшний день число их выросло еще больше, и если ГР (как отныне я буду ее именовать, следуя Монтгомери и всем другим современным исследователям) окажется неверной, то вся эта структура обвалится. Правда если контрпримеров окажется немного, значительную часть удастся спасти.

В работе Монтгомери 1973 года содержатся два результата. Первый — это теорема об общих статистических свойствах интервалов между нулями дзета-функции. В этой теореме предполагается справедливость ГР. Второй результат — гипотеза. Она утверждает, что парная корреляционная функция для этих интервалов именно такова, как Монтгомери описал ее в разговоре с Дайсоном. Важно понимать, что это гипотеза. Монтгомери не смог ее доказать даже в предположении о справедливости ГР. И никому другому тоже не удалось этого доказать.

Большая часть свойств нулей дзета-функции Римана, о которых пишут или рассказывают, как и большая часть идей, возникших за последние 30 лет, подобным же образом носят гипотетический характер. В этой области науки наблюдается явный дефицит твердых доказательств. Отчасти это вызвано тем, что после того, как Монтгомери выявил связь между нулями дзета-функции и собственными значениями, исследованиями ГР занялось много физиков и прикладных математиков. Сэр Майкл Берри[171] любит по этому поводу цитировать лауреата Нобелевской премии по физике Ричарда Фейнмана: «Известного куда больше, чем удается доказать». Отчасти же это происходит потому, что ГР представляет собой очень, очень упрямую проблему. ГР посвящено такое грандиозное количество литературы, что приходится все время напоминать себе, что на самом деле о нулях дзета- функции лишь очень мало известно наверняка и даже при всем всплеске интереса в течение нескольких последних лет математически неопровержимые результаты по-прежнему появляются лишь изредка, через длительные интервалы времени.

V.

Институт высших исследований в Принстоне, Нью-Джерси, находится всего в 32 милях от исследовательского центра Белловских лабораторий компании AT&T в Мюррей-Хилл. В 1978 году Хью Монтгомери читал в Принстоне лекции по теме, которая в то время называлась «гипотеза Монтгомери о парных корреляциях». Среди присутствовавших был молодой исследователь Эндрю Одлыжко, работавший в одном из отделов AT&T. Как раз в тот момент они приобрели суперкомпьютер Cray-1. Исследователи с воодушевлением строили планы запуска на нем своих программ и готовились к знакомству с теми алгоритмами, которые отвечали его архитектуре.

Размышляя по поводу лекции Монтгомери, Одлыжко рассуждал следующим образом. Гипотеза Монтгомери утверждает, что интервалы между нулями дзета-функции подчиняются некоторому статистическому закону. Этот закон возникает также при исследовании определенного семейства квантовых динамических систем, которые отвечают модели ГУА. Статистические свойства этого семейства были предметом интенсивного изучения в течение ряда лет. Однако статистические свойства нулей дзета-функции исследовались совсем мало. Пользу могло бы принести восстановление баланса — т.е. исследование статистических свойств нулей дзета-функции.

К этому Эндрю Одлыжко и приступил. Используя в качестве платформы для вычислений свободные процессорные мощности суперкомпьютера Cray в Белловских лабораториях [172] (ограниченные, однако, пятичасовым интервалом для каждого этапа вычислений), он с высокой точностью (около 8 десятичных знаков) получил первые 100 000 нетривиальных нулей дзета-функции Римана, исходя из формулы Римана-Зигеля. Далее, чтобы составить какое-то представление о происходящем много выше по критической прямой, он получил еще 100 000 нулей, начиная с 1000 000 000 001-го. Затем он прогнал эти два множества нулей через разнообразные статистические тесты, чтобы сравнить их с собственными значениями матриц, представляющих ГУА-операторы. Результаты этой работы были опубликованы в 1987 году в знаменитой статье, озаглавленной «О распределении интервалов между нулями дзета-функции».

Результаты оказались не полностью убедительными. Как сам Одлыжко весьма деликатно выразился в своей статье, «все полученные к настоящему моменту данные довольно неплохо согласуются с предсказаниями модели ГУА». Получилось несколько больше малых интервалов, чем это предсказывала модель ГУА. Тем не менее результаты Одлыжко произвели достаточное впечатление, чтобы привлечь внимание исследователей из нескольких различных областей. Дальнейшая работа позволила прояснить ситуацию с несоответствиями, отмеченными в статье 1987 года, и «гипотеза Монтгомери о парных корреляциях» стала законом Монтгомери-Одлыжко.[173]

Закон Монтгомери-Одлыжко

Распределение интервалов между последовательными нетривиальными нулями дзета-функции Римана (в правильной нормировке) статистически тождественно распределению собственных значений ГУА-оператора.

О природе полученных Одлыжко результатов я могу рассказать лишь вкратце. С этой целью я воспроизвел их на своем персональном компьютере, используя список нулей, который Одлыжко любезно разместил на своем веб-сайте.[174] Чтобы избежать всяких аномалий, связанных с малыми значениями, я взял нули от 90 001-го до 100 000-го, если считать вверх по критической прямой от 1/2. Это составляет 10 000 нулей — вполне достаточно, чтобы извлечь из них некоторый статистический смысл. Нуль с номером 90 001 расположен в точке 1/2 + 68 194,3528i, а 100 000-й нуль — в точке 1/2 + 74 920,8275i (если округлять до 4 знаков после запятой). Итак, изучим статистические свойства последовательности из 10 000 вещественных чисел, которая начинается числом 68 194,3528, а заканчивается числом 74 920,8275.

Мы говорили в главе 13.viii, что по мере движения вверх по критической прямой нули делаются в среднем ближе друг к другу и поэтому необходимо внести поправку — растянуть верхнюю часть выбранного интервала. Это совсем не сложно сделать, умножив каждое число на его логарифм. У бoльших чисел бoльшие логарифмы, а это как раз и требуется для того, чтобы выровнять среднее расстояние между нулями. В этом и состоит смысл слова «нормировка» в приведенной выше формулировке закона Монтгомери-Одлыжко. Теперь наша последовательность начинается числом 759 011,1279 и заканчивается числом 840 925,3931.

Далее, нас интересуют относительные интервалы между нулями, поэтому можно вычесть 759 011,1279 из каждого числа в последовательности — это не повлияет на результат. Последовательность теперь идет от нуля до числа 81 914,2653. И наконец, просто для того, чтобы сделать числа покрасивее, перейдем к другому масштабу, поделив каждое число на 8,19142653. Это также не повлияет на относительные интервалы, ведь все, что мы сделали, — это сменили масштаб. В этом окончательном виде наша последовательность начинается такими числами: 0, 1,2473, 2,5840 и т.д., а заканчивается числами 9 997,3850, 9 999,1528, 10 000.

Если включить значения на концах, то перед нами будет 10 000 приготовленных для исследования чисел, простирающихся от 0 до 10 000. Поскольку имеется 9999 интервалов между последовательными числами, средний интервал равен 10 000 : 9999, что лишь совсем чуть-чуть больше единицы.

Теперь можно задавать статистические вопросы. Например: как именно интервалы отклоняются от среднего? Сколь многие из них имеют длину меньше единицы?[175] Ответ: 5 349. У скольких из них длина больше 3? Ни у одного. Этот результат радикально отличается оттого, что получается из идеально случайного разброса[176], где эти числа соответственно равны 6 321 и 489. Это подтверждает те выводы, которые можно извлечь из рисунков

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату