Можно заметить, что некоторые члены (четвертый, восьмой, девятый) здесь отсутствуют. А из тех, что присутствуют, некоторые (первый, шестой, десятый) входят со знаком плюс, тогда как другие (второй, третий, пятый, седьмой) — со знаком минус. Ничего не напоминает? Здесь спрятана функция Мебиуса из главы 15. На самом деле

(где 1vx как и в других местах в книге, есть, конечно, просто x). Почему, как вам теперь кажется, это назвали мебиусовым обращением?

Итак, мы записали функцию ?(x), выразив ее через J(x) . Это чудесно, потому что Риман нашел способ, как выразить J(x) через ?(x).

Прежде чем расстаться с выражением (19.2), надо еще упомянуть, что, подобно выражению (19.1), это не бесконечная сумма, а конечная. Это происходит из-за того, что функция J, как и функция ?, равна нулю, когда x меньше 2 (взгляните на график!), а если последовательно извлекать корни из какого-нибудь числа, то результат рано или поздно упадет ниже 2 и там останется. Например,

?(100) = J(100) ? 1/2J(10) ? 1/3J(4,64…) ? 1/5J(2,51…) + 1/6J(2,15…) ? 0 + 0 + … = 288/15 ? 22/3 ? 5/6 ? 1/5 + 1/6,

что дает в точности число 25, которое и в самом деле является числом простых чисел меньших 100. Волшебство.

А теперь повернем Золотой Ключ.

V.

Вот Золотой Ключ, первое равенство в статье Римана 1859 года, полученное нами в главе 7, когда я убеждал вас, что это просто хитрый способ переписать решето Эратосфена:

He будем забывать, что числа, появляющиеся в правой части, — это в точности все простые числа.

Возьмем логарифм от обеих частей. Если что-то равно чему-то, то, конечно, и логарифм одного должен быть равен логарифму другого. Согласно 9-му правилу действий со степенями, которое гласит, что ln(a?b) = ln а + ln b, получаем

Но, поскольку ln 1/a = ?ln a согласно 10-му правилу, это выражение равно

Теперь вспомним ряд сэра Исаака Ньютона для функции ln (1 ? x) из главы 9.vii. Он пригоден при x, лежащем от ?1 до +1, что, без сомнения, выполнено в нашем случае, поскольку s положительно. Поэтому каждый логарифм можно разложить в бесконечный ряд таким образом (19.3):

Это бесконечная сумма бесконечных сумм — с первого взгляда, я полагаю, подобное немного пугает, но в математике такие конструкции встречаются достаточно часто.

Сейчас может показаться, что мы оказались в ситуации, которая много хуже той, что была вначале. Аккуратненькое бесконечное произведение мы превратили в бесконечную сумму бесконечных сумм. Предприятие может показаться безнадежным. Да, но это если не использовать всю мощь анализа.

VI.

Возьмем какой-нибудь один из членов в этой сумме сумм. Выберем, например, . Рассмотрим функцию x?s ?1 и будем временно считать, что s — положительное число. Каков интеграл от x?s?1? В силу общих правил обращения со степенями, приведенных в главе 7.vii, это x ?s/(?s), т.е. (?1/s)? (1/xs). Если мы возьмем этот интеграл при x, равном бесконечности, и вычтем из того, что получится, тот же интеграл, взятый при x равном 32,то что получится? Ну, если x — очень большое число, то (?1/s)?(1/xs) — число очень маленькое, так что справедливо будет считать, что, когда x бесконечно велико, это выражение равно нулю. И из этого — из нуля — мы собираемся вычесть (?1/s)?(1/(32)s). Такое вычитание дает (1/s)?(1/(32)s). Сухой остаток таков: выбранный член в выражении (19.3) можно переписать в виде интеграла

Но зачем мы вообще все это делаем? Чтобы вернуться к функции J, вот зачем.

Дело в том, что x = 32 — это значение, при котором функция J совершает прыжок на 1/2. В голове у математика — и уж точно в голове у великого математика, каким был Риман, — приведенное выражение сразу вызывает некоторый образ. Этот образ представлен на рисунке 19.4: это функция J с заполненной полосой. Полоса тянется от 32 (т.е. от 9) до бесконечности и имеет высоту одна вторая. Ясно, что вся площадь под (говорим «площадь под» — думаем «интеграл») графиком функции J составлена из подобных же полосок. Полоски высотой 1, протянувшиеся от каждого простого числа до бесконечности; полоски высотой одна вторая, идущие от каждого квадрата простого числа до бесконечности; полоски высотой одна треть от каждого куба простого числа до бесконечности… Видите, как все срастается с той бесконечной суммой бесконечных сумм в выражении (19.3)?

Рисунок 19.4. .

Конечно, площадь под графиком функции J бесконечна. Нарисованная полоска уже имеет бесконечную площадь (высота 1/2, длина бесконечна, площадь 1/2?? = ?). Таковы же площади и всех других полосок. Все вместе они складываются в бесконечность. Но что, если я пожелаю «придавить» функцию J справа таким образом, чтобы площадь под графиком стала конечной? Так, чтобы каждая из этих полосок

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату