величины, что его спокойно можно будет считать бесконечным. Поэтому в классической физике и имеется хаос.
Еще в 1971 году физик Мартин Гутцвиллер[181] нашел способ связать хаотические системы в классическом масштабе с подобными системами в квантовом мире путем взятия предела в уравнениях квантовой механики, когда квантовый множитель — постоянная Планка — стремится к нулю. Таким образом получается «квазиклассическая» система, а периодические орбиты, лежащие в основе классических хаотических систем, отвечают собственным значениям оператора, задающего эту систему.
Майкл Берри показал, что если риманов оператор существует, то он моделирует одну из этих квазиклассических хаотических систем, причем его собственные значения — мнимые части нулей дзета- функции — являются уровнями энергии этой системы. Периодические орбиты в аналогичной классической хаотической системе отвечали бы… — простым числам! (Строго говоря, их логарифмам). Кроме того, он показал, что у этой квазиклассической системы не было бы свойства «симметрии относительно обращения времени» — другими словами, если представить себе, что все скорости всех частиц в системе мгновенно и одновременно заменяются на противоположные, то система
Альтернативный подход развил другой исследователь — Ален Конн, профессор математики из парижского Коллеж де Франс. Вместо того чтобы выискивать, оператор какого типа мог бы иметь своими собственными значениями нули дзета-функции, он просто взял и построил такой оператор.
Это потребовало немалой ловкости. Оператор необходимо снабдить чем-то, на что он может действовать. Операторы того типа, о которых говорилось выше, действуют на
При желании для описания каждой точки в нашем пространстве можно ввести систему координат: для этого надо провести горизонтальную ось
Операторы, применяемые в математической физике, разумеется, действуют на значительно более сложных пространствах, чем в нашем примере. Эти пространства не двумерны и даже не трехмерны (подобно обычному пространству, которое окружает нас в быту), и даже не четырехмерны (как пространство-время, возникающее в теории относительности). Они представляют собой абстрактные математические пространства с
Чтобы получить первое представление о том, каким образом функцию можно отождествить с точкой в пространстве, рассмотрим один простой класс функций — квадратичные многочлены
Функции, с которыми имеет дело квантовая механика, — это волновые функции, которые определяют вероятность того, что частицы, составляющие описываемую систему, занимают определенные положения и имеют определенные скорости в данный момент времени. Другими словами, каждая точка в пространстве функций представляет некоторое состояние системы. Используемые в квантовой механике операторы кодируют наблюдаемые свойства системы; наибольшую известность имеет оператор Гамильтона, который кодирует энергию системы. Собственные значения оператора Гамильтона представляют собой уровни энергии в системе. Далее, каждое собственное значение определенным образом связывается с вполне определенной точкой (т.е. функцией) в бесконечномерном пространстве, называемой собственной функцией; она служит для представления состояния системы при заданном уровне энергии. Эти собственные функции играют ключевую роль при описании состояний системы. Всякое возможное состояние системы, любое ее физическое проявление дается некоторой линейной комбинацией собственных функций, в точности так же, как всякую точку в трехмерном пространстве можно записать в виде
Ален Конн построил довольно своеобразное пространство, на котором предстояло действовать его риманову оператору. Простые числа встроены в это пространство некоторым способом, заимствованным из понятий алгебраической теории чисел. Дадим краткий обзор работы Конна.
B основе построения всей классической физики лежат вещественные числа, такие как 22,45915771836…; поскольку такие числа не имеют замкнутого вида, требуется бесконечная последовательность десятичных разрядов, чтобы теоретически достичь полной точности. Реальные