третьего сверху) можно найти, умножив текущее значение
267. На приведенном здесь рисунке показано, как можно разделить окно на восемь просветов, «у которых все стороны тоже были бы равны». Каждый отрезок прута имеет равную длину.

Подразумевалось (хотя явно и не оговаривалось), что площади всех просветов должны быть равными, а в нашем случае площадь каждого из четырех неправильных просветов на ? больше площади квадратного просвета и ни форма, ни число сторон у них не совпадают. И все же это решение точно удовлетворяет поставленным условиям. Если бы из каждой головоломки пришлось удалить все, что допускает неоднозначное толкование, то она оказалась бы перегруженной всевозможными условиями. Лучше оставить кое-что недоговоренным (разумеется, если речь идет не об олимпиадных задачах).

268. На рисунке пунктиром изображено первоначальное окно размером 1 м2. После того как владелец загородил четыре угла, у него осталось квадратное окно вдвое меньшей площади, но в метр шириной и метр высотой.
269. Доску следует разрезать на расстоянии от В, равном 60 - 120 = 79,732

270. Каждая сторона поля равна 440 м,

271. Три скатерти размером 144 ? 144 см покроют стол размером 183 ? 183 см, если их положить так, как показано на рисунке. Квадрат
272. Холст должен быть размером 10 ? 20 см, ширина миниатюры составит 6 см, а высота 12 см. Нетрудно проверить, что излишки при этом окажутся такими, как требуется по условию задачи.
273. Клумба имела в длину 14 м, а в ширину 10 м.
274. Задачу можно решать по-разному. Ответ всегда будет равен 35.

275. Старый ответ состоит в том, что если вы расположите жерди, как показано на рисунке в случае

276. Отложим отрезок
277. Правильность приведенного здесь рисунка можно легко проверить, поскольку сумма 152 + 202 = 252, сумма 152 + 362 = 392 и, наконец, 152 + 82 = 172, Кроме того, 20 + 8 = 28. Если бы разрешалось брать прямоугольный треугольник, то маленький треугольник слева со сторонами 15, 25, 20 сам мог бы служить решением, так как высота, опущенная на основание (25), равна 12, а медиана 12?.

Быть может, наши читатели, пожелав испытать собственные силы, захотят найти общее решение данной задачи?
[Существует и другое решение: тупоугольный треугольник с основанием 66, сторонами 41 и 85 и высотой 40. Медиана этого треугольника равна 58. В этом случае высота опускается на продолжение основания, образуя новый, прямоугольный треугольник с основанием 9 и сторонами 40 и 41. —
278. Известны лишь расстояния 15 и 6 км. Все, что нужно сделать, — это разделить 15 на 6 и прибавить 2, при этом получится 4?. Разделив затем 15 на 4?) получите 3? км. Это и будет искомым расстоянием между двумя пунктами.
Приведенный способ применим во всех случаях, когда пути образуют прямоугольный треугольник. Простые алгебраические выкладки покажут, откуда взялась константа 2.
Проверить справедливость нашего решения можно следующим образом. Стороны треугольника равны 15, 9? (6 плюс 3?) и 17? км (для того чтобы независимо от маршрута расстояние равнялось 21 км). Чтобы избавиться от дробей, умножим все числа на 3 и получим 45, 28 и 53. Если 452 (2025) плюс 282 (784) равно 532 (2809), то все верно, а это равенство можно легко проверить.

279. На рисунке показаны все расстояния. Спросившему нужно было всего лишь возвести в квадрат 60 км, проделанные первым мотоциклистом (3600), и разделить результат на удвоенную сумму этих 60 и 12 км, составляющих расстояние от дороги
280. При тех размерах, которые приведены на приложенном к задаче рисунке, никакого треугольника построить вообще нельзя, так как сумма двух меньших сторон не будет превосходить третьей стороны. Очевидно, профессор хотел проверить сообразительность своих учеников.
281. Это снова была шутка. Владелец участка может строить дом, где пожелает, поскольку сумма перпендикуляров, опущенных из любой внутренней точки равностороннего треугольника на стороны, равна высоте данного треугольника.

282. Всего таких квадратов 19. Из них 9 того же размера, что и квадрат, отметенный буквами
[На самом деле квадратов 21. Не сумеет ли читатель найти два квадрата, пропущенные Дьюдени? Ответ на вторую часть задачи остается тем не менее верным. —