макроскопических телах, и выяснившая физическую сущность энтропии, позволила понять природу В. н. т., определить пределы его применимости и устранить кажущееся противоречие между механической обратимостью любого, сколь угодно сложного микроскопического процесса и термодинамической необратимостью процессов в макротелах.

  Как показывает статистическая термодинамика (Л. Больцман, Дж. Гиббс), энтропия системы связана со статистическим весом Р макроскопического состояния:

  S = klnP  (kБольцмана постоянная). Статистический вес Р пропорционален числу различных микроскопических реализаций данного состояния макроскопической системы (например, различных распределений значений координат и импульсов молекул газа, отвечающих определённому значению энергии, давления и других термодинамических параметров газа), т. е. характеризует как бы степень неточности микроскопического описания макросостояния. Для замкнутой системы вероятность термодинамическая W данного макросостояния пропорциональна его статистическому весу и определяется энтропией системы:

  W ~ exp (S/k).     (2)

  Таким образом, закон возрастания энтропии имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Максимально вероятным является состояние равновесия; за достаточно большой промежуток времени любая замкнутая система достигает этого состояния.

  Энтропия является величиной аддитивной (см. Аддитивность), она пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относительное изменение энтропии, приходящейся на одну частицу, существенно меняет её абсолютную величину; изменение же энтропии, стоящей в показателе экспоненты в ур-нии (2), приводит к изменению вероятности данного макросостояния W в огромное число раз. Именно этот факт является причиной того, что для системы с большим числом частиц следствия В. н. т. практически имеют не вероятностный, а достоверный характер. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных времён ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абсолютным изменением энтропии. Средние значения частоты и размеров этих флуктуаций являются таким же достоверным следствием статистической термодинамики, как и само В. н. т.

  Проиллюстрируем сказанное примером, позволяющим оценить масштабы величин, определяющих точность В. н. т. и отклонения от него. Рассмотрим флуктуационный процесс, в результате которого N частиц, первоначально занимающих объём V, равный 1 мкм3 (т. е. 10-18 м3), сконцентрируется самопроизвольно в половине этого объёма. Отношение статистических весов начального (1) и конечного (2) состояний:

 

поэтому изменение энтропии DS/k = Nin2 и отношение вероятностей W1/W2 = 2N. Если время пролёта частицы через объём V, т. е. время, в течение которого сохраняется данная флуктуация, t = 10- 8 сек, то среднее время ожидания такой флуктуации t =2N·t » 100,3N·t. При числе частиц N = 30, t = 10 сек, при N = 100, t » 1022 сек » 1015 лет. Если же учесть, что при атмосферное давлении число частиц газа в 1 мкм3 составляет N ~ 108, то время ожидания указанного события

 

  Буквальное применение В. н. т. к Вселенной как целому, приведшее Клаузиуса к неправильному выводу о неизбежности «тепловой смерти Вселенной», является неправомерным, так как любая сколь угодно большая часть Вселенной не является сама по себе замкнутой и её приближение к состоянию теплового равновесия, даже не говоря о флуктуациях, не является абсолютным.

  Термодинамическое же описание Вселенной как целого возможно лишь в рамках общей теории относительности, в которой вывод о приближении энтропии к максимуму не имеет места.

  И. М. Лифшиц.

  Лит.: Планк М., Введение в теоретическую физику, 2 изд., ч. 5, М. — Л., 1935; Френкель Я. И., Статистическая физика, М. — Л., 1948; Ландау Л., Лифшиц Е., Статистическая физика, М. — Л., 1951; Леонтович М. А., Введение в термодинамику, 2 изд., М. — Л., 1952; Самойлович А. Г., Термодинамика и статистическая физика, М., 1953; Смолуховский М., Границы справедливости второго начала термодинамики, «Успехи физических наук», 1967, т. 93, в. 4.

Второе сербское восстание 1815

Второ'е се'рбское восста'ние 1815, народное восстание против турецкого гнёта в Сербии, фактически явилось продолжением первого сербского восстания 1804— 13. Началось 11 апреля в Валевской нахии (Белградский пашалык). 7 мая повстанцы одержали первую победу над турками у горы Любич близ г. Чачак. 17 мая был освобождён г. Палеж (современный Обреновац) и открыт путь для установления связей с австрийскими сербами, помогавшими повстанцам оружием и снаряжением. 3 июля повстанцы овладели г. Пожаревац. Турки двинули против восставших две армии: из Боснии и из Румелии. Руководитель повстанцев — активный участник восстания 1804—13 — Милош Обренович вынужден был начать переговоры с главнокомандующим турецких армий. Опираясь на дипломатическую поддержку России, он заключил перемирие с румелийским вали Марашлы Али-пашой (28 августа 1815). 10 октября 1815 Милош и Марашлы Али-паша заключили устное соглашение, по которому регламентировались размеры податей спахиям (турецким помещикам), сербы получили право самим собирать налоги султану, сербские кнезы участвовали в суде над сербами наравне с турецкими чиновниками, учреждалась сербская народная канцелярия как высший административный и судебный орган для сербов. Милош стал верховным кнезом Сербии. Несмотря на то что восстание увенчалось лишь частичным успехом, оно создало базу для последующей борьбы за внутреннюю автономию Сербии, завершившуюся в 30-х гг. 19 в. созданием Сербского княжества.

  Лит.: История Югославии, т. 1, М., 1963, с. 324—330; Jakшиħ Г. и Страњаковиħ Д., Сербиja од 1813 до 1858 године (Српски народ у XIX веку, књ. 2), Београд, (1937].

  В. Г. Карасёв.

Второзаконие

Второзако'ние, пятая книга Пятикнижия (составной части Библии).

Второй Афинский морской союз

Второ'й Афи'нский морско'й сою'з (378/377—355 до н. э.), военно-политическое объединение (симмахия) ряда древнегреческих полисов под руководством Афин. Союз был создан в целях борьбы за господство в Эгейском море и черноморских проливах, овладения северными рынками сбыта и источниками сырья, особенно районов Фракии и Причерноморья, в чём были весьма заинтересованы Афины, Византий, островные полисы Эгейского моря (Хиос, Родос, Митилена и др.). Задачей союза было также противодействие Спарте как в её стремлении ликвидировать демократические порядки в греческих полисах, так и в установлении её гегемонии в Греции. Он был создан вопреки условиям Анталкидова мира 387 до н. э. К 374 число членов В. А. м. с. достигло 70. Спарта договорами 374 и 371 была вынуждена

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату