эфире . Среди многих функций, приписывавшихся эфиру, была передача световых возмущений. В начале 19 в. была разработана оптика Т. Юнга — О. Френеля , в которой скорость света относительно эфира считалась константой, не зависящей от движения источника. Отсюда следовало нарушение принципа относительности, т.к. для наблюдателя, движущегося в эфире со скоростью u навстречу световому лучу, скорость света должна была бы равняться с + u (эфирный ветер). Такой эфирный ветер должен был бы возникать, в частности, из-за орбитального движения Земли (со скоростью 30 км /сек ). Поиски эфирного ветра затруднялись, однако, тем, что уже по теории Френеля эффекты порядка u /c (~10–4 для орбитального движения Земли) должны отсутствовать в широком классе опытов.
Проблема эфира заняла одно из центр. мест в физике после построения Дж. Максвеллом теории электромагнитного поля, в которой эфир стал носителем не только световых волн, но и электрических и магнитных полей. Попытки обнаружения эфирного ветра были сделаны А. Майкельсоном (1881) и А. Майкельсоном и Э. Морли (1887), искавшими эффект порядка u 2 /c 2 , и дали отрицательный результат (см. Майкельсона опыт ). Возникла проблема согласования опыта Майкельсона с оптикой и электродинамикой, основанными на представлении об эфире. Наиболее очевидными казались объяснения, базирующиеся на гипотезе полного увлечения эфира движущимися телами. Оптические и электромагнитные теории, использовавшие эту гипотезу, обсуждались (Дж. Г. Стокс , Г. Герц ), но они оказались либо внутренне противоречивыми, либо не описывали всей совокупности экспериментальных фактов. Наиболее успешной была электродинамика Х. Лоренца , в основе которой лежало представление о неподвижном эфире и которая, на первый взгляд, была несовместима с принципом относительности. В 1892 Лоренц (ранее английский физик Дж. Фицджеральд, 1889) заметил, что отрицательный результат опыта Майкельсона объясняется, если продольные размеры всех тел сокращаются в
раз при движении тел относительно эфира со скоростью u . Это сокращение (т. н. Лоренца – Фицджеральда сокращение) Лоренц объяснял изменением действующих в телах электромагнитных сил при движении тела через эфир. В 1895 Лоренц, рассматривая соответствие между движущейся и неподвижной относительно эфира системами тел, ввёл (в приближении u /c ) понятие «местного времени» t ’ = t – (u /c )(x – ut ) и доказал, что эффекты движения относительно эфира отсутствуют в порядке u /c .
Ситуация наталкивала на мысль о необнаружимости движения относительно эфира. Такой вывод сделал А. Пуанкаре , который начиная с 1895 выражал убеждение, что движение относительно эфира необнаружимо принципиально. В 1900-е гг. при обсуждении электромагнитных явлений он начал пользоваться термином «принцип относительности», формулируя его как невозможность обнаружения движения относительно эфира. В начале 1900-х гг. был проведён ряд опытов, подтвердивших, что движение Земли не влияет на электромагнитные, в частности на оптические, явления. [К этому вопросу возвращались и после создания О. т.; в 1963, например, отсутствие эфирного ветра проверено в опытах, которые могли бы обнаружить эфирный ветер в несколько м /сек (Д. Чампней и др.).] Проблема согласования этого факта с электродинамикой Максвелла — Лоренца стала насущной.
Объяснение невозможности обнаружить абсолютное движение в рамках представлений об эфире и связанной с ним привилегированной системе отсчёта было дано Лоренцом и Пуанкаре в 1904—05. Предполагая, что уравнения электродинамики Лоренца (см. Лоренца — Максвелла уравнения ) справедливы в системе координат, покоящейся относительно эфира, они сделали вывод, что все тела при движении в эфире испытывают лоренц-фицджеральдовское сжатие, а происходящие в них движения изменяются определённым образом, но эти изменения в силу их универсальности необнаружимы для наблюдателя, движущегося вместе с телом. Преобразования, названные Пуанкаре преобразованиями Лоренца, описывали связь между пространственно-временными координатами для процессов в двух телах, одно из которых двигалось, а другое покоилось относительно эфира. (Ранее близкие преобразования применил нем. физик В. Фохт; правильные преобразования нашёл впервые Дж. Лармор в 1900.)
В завершающей работе Пуанкаре (поступившей в печать 23 июля 1905) содержался разработанный математический анализ релятивистских преобразований, интерпретировавшихся в описанном выше смысле. Было показано, что преобразования Лоренца образуют группу, оставляющую инвариантным интервал x 2 + y 2 + z