уравновешенного тела получат дополнительные связи, отвердеют. Поэтому, выделив мысленно в массе тяжелой жидкости, находящейся в равновесии, произвольный объем, мы не нарушим этого равновесия, считая жидкость в этом объеме отвердевшей. Тогда она представит собой тело, вес которого равен весу воды в объеме этого тела. Поскольку тело находится в равновесии, на него со стороны окружающей жидкости действует сила, направленная вверх, равная его весу.

Так как окружающая тело жидкость остается неизменной, если это тело заменить любым другим телом той же формы и объема, то она всегда действует на тело с силой, равной весу жидкости в объеме тела.

Это изящное доказательство закона Архимеда вошло в учебники.

Стевин доказывает далее путем логических рассуждений и подтверждает экспериментом, что весовое давление жидкости на дно сосуда определяется площадью дна и высотой уровня жидкости и не зависит от формы сосуда. Значительно позже этот гидростатический парадокс был открыт Паскалем, не знавшим сочинения Стевина, написанного на мало распространенном голландском языке.

Как практик-кораблестроитель, Стевин рассматривает условия плавания тел, подсчитывает давление жидкости на боковые стенки, решая вопросы, важные для кораблестроения.

Таким образом, Стевин не только восстановил результаты Архимеда, но и развил их. С него начинается новый этап в истории статики и гидростатики.

Почти одновременно со Стевином и независимо от него вопросы статики и гидростатики решал Галилей. Он также нашел закон равновесия тел на наклонной плоскости, которую вообще изучил очень подробно. Наклонная плоскость сыграла важную роль в механических исследованиях Галилея. К этому мы еще вернемся при обсуждении динамики Галилея.

Галилей восстановил в более простой и измененной форме архимедовское доказательство закона рычага. Он обосновал его заново, опираясь по существу на принцип возможных перемещений (с помощью этого не сформулированного им еще в явной форме принципа Галилей обосновал и закон наклонной плоскости).

Обсуждению закона Архимеда и условий плавания тел посвящено вышедшее в 1612 г. сочинение Галилея «Рассуждения о телах, пребывающих в воде». И это сочинение Галилея нераздельно связано с его борьбой за новое мировоззрение и новую физику. Он писал: «Я решил написать настоящее рассуждение, в котором надеюсь показать, что я часто расхожусь с Аристотелем во взглядах не по прихоти и не потому, что я не читал его или не понял, но в силу убедительных доказательств». В этом сочинении он пишет и о своих новых исследованиях спутников Юпитера, и об открытых им солнечных пятнах, наблюдая которые он вывел, что Солнце медленно вращается вокруг своей оси.

Переходя к основной теме сочинения, Галилей полемизирует с перипатетиками, считающими, что плавание тел определяется прежде всего формой тела. Оригинален подход Галилея к обоснованию закона Архимеда и теории плавания тел. Он рассматривает поведение тела в жидкости в ограниченном объеме и ставит вопрос о весе жидкости способной удержать тело заданного веса.(Вопрос Галилея обсуждался на страницах советских научно-популярных журналов Ему посвящались страницы фундаментальных монографий по гидростатике и механике )

Главная заслуга Галилея в обосновании динамики. К тому, что уже было сказано по этому вопросу, нам остается добавить немногое, но это немногое имеет существенное значение. Галилею принадлежит фундаментальное открытие независимости ускорения свободного падения от массы тела, которое он нашел, опровергая мнение Аристотеля, что скорость падения тел пропорциональна их массе. Галилей показал, что эта скорость одинакова для всех тел, если отвлечься от сопротивления воздуха, и пропорциональна времени падения, пройденный же в свободном падении путь пропорционален квадрату времени.

Рис. 10. Маятник Галилея

Открыв законы равноускоренного движения, Галилей одновременно открыл закон независимости действия силы. В самом деле, если сила тяжести, действуя на покоящееся тело, сообщает ему за первую секунду определенную скорость, т. е. изменяет скорость от нуля до некоторого конечного значения (9,8 м/с ), то в следующую секунду, действуя уже на движущееся тело, она изменит его скорость на ту же самую величину и т. д. Это и отражается законом пропорциональности скорости падения времени падения. Но Галилей не ограничился этим и, рассматривая движелие тела, брошенного горизонтально, настойчиво подчеркивал независимость скорости падения от сообщенной телу при бросании горизонтальной скорости: «Не замечательная ли вещь, — говорит Сагредо в «Диалоге»,— что в то самое малое время, которое требуется для вертикального падения на землю с высоты каких-нибудь ста локтей, ядро, силою пороха выброшенное из пушки, пройдет четыреста, тысячу, четыре тысячи, десять тысяч локтей, так что при всех горизонтально направленных выстрелах останется в воздухе одинаковое время».

Галилей определяет и траекторию горизонтально брошенного тела. В « Диалоге » он считает ее ошибочно дугой окружности В «Беседах» он исправляет свою ошибку и находит, что траектория движения тела параболическая.

Законы свободного падения Галилей проверяет на наклонной плоскости Он устанавливает важный факт, что скорость падения не зависит от длины, а зависит только от высоты наклонной плоскости. Далее он выясняет, что тело, скатившееся по наклонной плоскости с определенной высоты, поднимется на ту же высоту в отсутствие трения. Поэтому и маятник, отведенный в сторону, пройдя через положение равновесия, поднимется на ту же высоту независимо от формы пути. Таким образом Галилей по существу открыл консервативный характер поля тяготения. Что же касается времени падения, то оно в соответствии с законами равноускоренного движения пропорционально корню квадратному из длины плоскости. Сравнивая времена скатывания тела по дуге окружности и по стягивающей ее хорде, Галилей находит, что тело скатывается быстрее по окружности Он полагает также, что время скатывания не зависит от длины дуги, т. е. дуга окружности изохронна. Это утверждение Галилея справедливо только для малых дуг, но оно имело очень важное значение. Открытие изохронности колебаний кругового маятника Галилей использовал для измерения промежутков времени и сконструировал часы с маятником. Конструкцию своих часов он не успел опубликовать. Она была опубликована после его смерти, когда маятниковые часы уже были запатентованы Гюйгенсом.

Изобретение маятниковых часов имело огромное научное и практическое значение, и Галилей чутко понял значение своего открытия. Гюйгенс исправил ошибку Галилея, показав, что изохронной является циклоида, и использовал в своих часах циклоидальный маятник. Но теоретически правильный циклоидальный маятник практически оказался неудобным, и практики перешли к галилеевскому, круговому маятнику, который и поныне применяется в часах.

Еще при жизни Галилея Эванджелиста Торричелли (1608—1647) обратил на себя его внимание своим сочинением, в котором решил задачу о движении тела, брошенного с начальной скоростью под углом к горизонту. Торричелли определил траекторию полета (она оказалась параболой), вычислил высоту и дальность полета, показав, что при заданной начальной скорости наибольшая дальность достигается при направлении скорости под углом 45° к горизонту. Торричелли разработал метод построения касательной к параболе. Задача нахождения касательных к кривым привела к возникновению дифференциального исчисления. Галилей пригласил Торричелли к себе и сделал его своим учеником и преемником.

Имя Торричелли навсегда вошло в историю физики как имя человека, впервые доказавшего существование атмосферного давления и получившего «торричеллиеву пустоту». Еще Галилей сообщал о наблюдении флорентийских колодезников, что вода не вытягивается насосом на высоту более некоторого определенного значения, составляющего немного более Юм. Галилей заключил отсюда, что аристотелевская «боязнь пустоты» не превышает некоторого измеряемого значения.

Торричелли пошел дальше и показал, что в природе может существовать пустота Исходя из представления, что мы живем на дне воздушного океана, оказывающего на нас давление, он предложил Вивиани (1622—3703) измерить это давление с помощью запаянной трубки, заполненной ртутью При опрокидывании трубки в сосуд с ртутью ртуть из нее выливалась не полностью, а останавливалась на некоторой высоте, так что в трубке над ртутью образовывалось пустое пространство Вес столба ртути измеряет давление атмосферы Так был сконструирован первый в мире барометр.

Открытие Торричелли вызвало огромный резонанс Рухнула еще одна догма перипатетической физики.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×