Декарт сразу же предложил идею измерения атмосферного давления на различных высотах Эта идея была реализована французским матемагиком, физиком и философом Паскалем Блез Паскаль (1623—1662) — замечательный математик, известный своими результатами в геометрии, теории числа, теории вероятностей и т. д., вошел в историю физики как автор закона Паскаля о всесторонней равномерной передаче давления жидкости, закона сообщающихся сосудов и теории гидравлического пресса В 1648 г по просьбе Паскаля его родственником был произведен опыт Торричелли у подножия и на вершине горы Пюи де Дом и был установлен факт падения давления воздуха с высотой. Совершенно ясно, что «боязнь пустоты», которую еще в 1644 г. признавал Паскаль, противоречила этому результату, как и установленному еще Торричелли факту изменения высоты ртутного столба в зависимости от состояния погоды Из опыта Торричелли родилась научная метеорология Дальнейшее развитие открытия Торричелли привело к изобретению воздушных насосов, открытию закона упругости газов и изобретению пароатмосферных машин, положившему начало развитию теплотехники. Итак, достижения науки стали служить технике Наряду с механикой стала развиваться оптика. Здесь практика опередила теорию. Голландские мастера очков построили первую оптическую трубу, не зная закона преломления света. Этого закона не знали Галилей и Кеплер, хотя Кеплер правильно чертил ход лучей в линзах и системах линз. Закон преломления нашел голландский математик Виллеброрд Снел-лиус (1580-1626). Однако он его не опубликовал. Впервые опубликовал и обосновал этот закон с помощью модели частиц, меняющих скорость движения при переходе из одной среды в другую, Декарт в своей «Диоптрике» в 1637 г. Эта книга, являющаяся одним из приложений к «Рассуждению о методе», характерна своей связью с практикой. Декарт отправляется от практики изготовления оптических стекол и зеркал и приходит к этой практике. Он ищет средства избежать несовершенства стекол и зеркал, средства устранения сферической аберрации. С этой целью он исследует различные формы отражающих и преломляющих поверхностей: эллиптическую, параболическую и т. д.

Связь с практикой, с оптическим производством вообще характерна для оптики XVII в. Крупнейшие ученые этой эпохи, начиная с Галилея, сами изготовляли оптические приборы, обрабатывали поверхность стекол, изучали и совершенствовали опыт практиков. Степень обработки поверхностей линз, изготовленных Торричелли, была настолько совершенна, что современные исследователи предполагают, что Торричелли владел интерференционным методом проверки качества поверхностей. Голландский философ Спиноза добывал средства к существованию изготовлением оптических стекол. Другой голландец — Левенгук — изготовлял превосходные микроскопы и стал основателем микробиологии. Ньютон, современник Снеллиуса и Левенгука, был изобретателем телескопа и собственноручно, с необыкновенным терпением шлифуя и обрабатывая поверхности, изготовлял их. В оптике физика шла рука об руку с техникой, и эта связь не порывается до настоящего времени.

Другим важным достижением Декарта в оптике была теория радуги. Он правильно построил ход лучей в дождевой капле, указал, что первая, яркая дуга получается после двукратного преломления и одного отражения в капле, вторая дуга — после двукратного преломления и двукратного отражения. Открытое Кеплером явление полного внутреннего отражения используется, таким образом, в декартовской теории радуги. Однако причины радужных цветов Декарт не исследовал. Предшественник Декарта в исследовании радуги, умерший в тюрьме инквизиции Доминис воспроизвел цвета радуги в стеклянных шарах, заполненных водой (1611).

Начало исследования в области электричества и магнетизма было положено книгой врача английской королевы Елизаветы Уильяма Гильберта (1540—1603) «О магните, магнитных телах и о большом магните — Земле, новая физиология», вышедшей в 1600 г. Гильберт первый дал правильное объяснение поведению магнитной стрелки в компасе. Ее конец не «влечется» к небесному полюсу (как думали до Гильберта), а притягивается полюсами земного магнита. Стрелка находится под воздействием земного магнетизма, магнитного поля земли, как объясняем мы теперь.

Гильберт подтвердил свою идею моделью земного магнита, выточив из магнитного железняка шар, который он назвал «терреллой», т. е. «земелькой». Изготовив маленькую стрелку, он демонстрировал ее наклонение и изменение угла наклонения с широтой. Магнитное склонение на своей террелле Гильберт продемонстрировать не мог, так как полюса его терреллы были для него и географическими полюсами.

Далее Гильберт открыл усиление магнитного действия железным якорем, которое правильно объяснил намагничением железа. Он установил, что намагничение железа и стали происходит и на расстоянии от магнита (магнитная индукция).

Ему удалось намагнитить железные проволоки магнитным полем Земли. Гильберт отметил, что сталь в отличие от железа сохраняет магнитные свойства после удаления магнита. Он уточнил, наблюдение Перегрина, показав, что при разламывании магнита всегда получаются магниты с двумя полюсами и, таким образом, разделение двух магнитных полюсов невозможно.

Крупный шаг вперед сделал Гильберт и в изучении электрических явлений. Экспериментируя с различными камнями и веществами, он установил, что, кроме янтаря, свойство притягивать легкие предметы после натирания приобретает ряд других тел (алмаз, сапфир, аметист, горный хрусталь, сера, смола и т. д.), которые он назвал электрическими, т. е. подобными янтарю. Все прочие тела, в первую очередь металлы, которые не обнаруживали такие свойства, Гильберт назвал «неэлектрическими». Так в науку вошел термин «электричество», и так было положено начало систематическому изучению электрических явлений. Гильберт исследовал вопрос о сходстве магнитных и электрических явлений и пришел к выводу, что эти явления глубоко различны и не связаны между собой. Этот вывод держался в науке более двухсот лет, пока Эрстед не открыл магнитное поле электрического тока.

«Я воздаю величайшую хвалу и завидую этому автору», — писал Галилей в «Диалоге» о книге Гильберта. «Он кажется мне достойным величайшей похвалы также и за много сделанных им новых и достоверных наблюдений, ...и я не сомневаюсь, что с течением времени эта новая наука будет совершенствоваться путем новых наблюдений и в особенности путем правильных и необходимых доказательств. Но от этого не должна уменьшаться слава первого наблюдателя».

Нам осталось добавить несколько слов об изучении тепловых явлений. Теплота и холод в аристотелевской физике были одними из первичных качеств и поэтому дальнейшему анализу не подлежали. Конечно, представления о «степени нагретости» или холода существовали и раньше, люди отмечали и сильный холод, и сильную жару. Но только в XVII в. начались попытки определения температуры более объективными показателями, чем человеческие ощущения. Один из первых термометров, точнее, термоскопов был изготовлен Галилеем. Исследования тепловых явлений после смерти Галилея продолжали флорентийские академики. Появились новые формы термометров. Ньютон изготовил термометр с льняным маслом.

Однако термометрия прочно встала на ноги только в XVIII в., когда научились изготовлять термометры с постоянными точками. Во всяком случае, в эпоху Галилея наметился научный подход к изучению тепловых явлений. Были сделаны и первые попытки построить теорлю теплоты. Интересно, что Бэкон решил применить свой метод именно к исследованию теплоты.

Собрав большое количество сведений, в том числе и непроверенных фактов, расположив их в придуманной им таблице «Положительных инстанций» и «Отрицательных инстанций», он все же пришел к правильному выводу, что теплота является формой движения мельчайших частиц.

Глава пятая. Завершение борьбы за гелиоцентричекую систему

Дальнейшие успехи экспериметальной физики

Церковь сожжением Бруно, запрещением учения Коперника и осуждением Галилея рассчитывала запугать ученых и остановить распространение новых идей. Ей действительно удалось кое-кого запугать.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×