5Намек на возможное содействие Лазаревского.
6В рамках «Русской акции», проведенной в Чехословакии на государственном уровне, оказывалась помощь русским писателям (подробнее см.: «Русская Прага, Русская Ницца, Русский Париж. Из дневника Бориса Лазаревского» (33 письма Михаила Арцыбашева, Ивана Бунина, Александра Куприна, Ильи Сургучева и других). Предисловие, публикация и комментарий Сергея Шумихина, — в сб.: «Диаспора». I. Новые материалы. Париж — СПб., 2001).
7Жена В. Ф. Кибальчича (см. примеч. 3 к письму 11).
8Обыгрывание чешского произношения слова «студентки».
9Город в Хорватии, климатический курорт на Адриатическом море. Был в Средние века научным и культурным центром на Балканах («Славянские Афины»).
10Возможно, Эстер или Анна Марсель, дочери А. И. Русакова.
11Куприн намекает на действительно почти нечитаемый почерк Лазаревского, одновременно справедливо характеризуя свой как «безобразно однообразный».
12В этом имени Куприн обыгрывал псевдоним своего тезки Александра Ивановича Герцена.
Публикация, подготовка текста, предисловие
Геометрия Достоевского
1. Истина и Христос
Федор Михайлович Достоевский серьезно занимался математикой в Петербургском военно- инженерном училище, которое он закончил в 1843 году в возрасте двадцати двух лет. Несмотря на то что он не был профессионалом и смотрел на происходящее в математике (с математикой) со стороны, он представлял себе язык и метод математики и мог почувствовать те парадоксы, которые уже вторгались в науку и на которые многие профессиональные математики еще не обращали должного внимания. Собственно ощущение «парадоксальности» математики и ее недостаточная обоснованность возникли едва ли не в тот момент, когда требование последовательной строгости было осознано как обязательная составляющая любого математического рассуждения. Если в геометрии строгий вывод был обязателен уже со времен Евклида1 , то в бурно развивавшемся математическом анализе положение было гораздо более шатким. Строгое обоснование анализа стало утверждаться в начале — первой половине XIX века, в частности в работах Огюстена-Луи Коши (1789 — 1857) и Карла Гаусса (1777 — 1855). Теоретические построения великих математиков XVIII века — в первую очередь Леонарда Эйлера (1707 — 1783), но и Жана Д’Аламбера (1717 — 1783), и Жозефа-Луи Лагранжа (1736 — 1813), и даже Пьера Лапласа (1749 — 1827) — с сегодняшней точки зрения не всегда отвечают требованиям строгости рассуждения. Верность результатов у романтиков математики обеспечивалась не столько обоснованностью вывода, сколько интуицией и мышлением по аналогии — как у средневековых философов. (Впрочем, мышление схоластов часто было гораздо строже, чем мышление математиков Просвещения, именно с точки зрения точности логического вывода и аксиоматического обоснования.)
Требование строгости математического вывода было отчетливо осознано Кантом в «Критике чистого разума». Кант настаивал на том, что математическое знание имеет другую природу, отличную от естественных наук, — не эмпирическую, но априорную. «Математика дает нам блестящий пример того, как далеко мы можем продвинуться в априорном знании независимо от опыта»2 . Математика играет совершенно особую роль в познании еще и потому, что математические знания «с древних времен обладают достоверностью и этим открывают возможность для развития других [знаний], хотя бы они и имели совершенно иную природу. К тому же, находясь за пределами опыта, можно быть уверенным в том, что не будешь опровергнут опытом»3 . Для того чтобы математика могла играть роль такого рода