рациональное число есть число алгебраическое (вопрос к читателю: почему?), и алгебраические числа образуют как бы следующий за рациональными разряд чисел по шкале “от простого к сложному”. Математиков долгое время интересовал вопрос, бывают ли действительные числа, не являющиеся алгебраическими; такие числа называют “трансцендентными”. Существование трансцендентных чисел было установлено в 1844 году путём приведения соответствующих достаточно сложных примеров; лишь в 1873 году и, соответственно, в 1882 году была доказана трансцендентность известных чисел e и ? . Однако, если не требовать указания конкретных примеров трансцендентных чисел, само существование таковых может быть установлено тем же методом, каким выше было установлено существование чисел иррациональных. Именно, в 1874 году Кантор показал, что множество всех алгебраических уравнений счётно, из чего уже несложно вывести счётность множества алгебраических чисел. А мы знаем, что множество всех действительных чисел континуально, так что оно никак не может состоять из одних только алгебраических чисел.
Понятие эквивалентности служит основой для возникновения понятия количества элементов множества.
Надеемся, что читатель уже пришёл к выводу, что все счётные множества обладают одним и тем же количеством элементов. В частности, количество всех квадратов равно количеству всех натуральных чисел. Количество элементов какого-либо счётного множества (а у всех счётных множеств количество элементов одно и то же!) называется
(произносится
В математике вообще количество элементов в каком-либо множестве называют
Описанный выше способ, посредством которого существование иррациональных и трансцендентных чисел можно получить из общих соображений, без предъявления конкретных примеров, мы вправе назвать количественным, ибо он основан на несовпадении количеств — счётного количества, присущего как множеству рациональных, так и множеству алгебраических чисел, и континуального количества, присущего множеству всех действительных чисел.
Теперь о сравнении количеств. Два количества могут быть равны или не равны. Давайте осознаем, чтбо это означает. Каждое количество представлено коллекцией всех мыслимых эквивалентных друг другу множеств. Равенство количеств означает совпадение соответствующих коллекций, а неравенство — их несовпадение. Семь потому не равно восьми, что коллекция всех множеств, эквивалентных множеству смертных грехов, не совпадает с коллекцией всех множеств, эквивалентных множеству планет. Количество квадратов потому равно количеству натуральных чисел, что коллекция всех множеств, эквивалентных множеству квадратов, совпадает с коллекцией всех множеств, эквивалентных натуральному ряду. Но хотелось бы иметь право говорить не только о равенстве или неравенстве двух количеств, но и о том, которое из них больше, а которое меньше. (Не запутайтесь: слова “больше” и “меньше” относятся к количествам, а не к представляющим их коллекциям множеств!)
Спросим уже знакомых нам не умеющих считать первобытных скотоводов, могут ли они определить, в каком из их стад больше элементов — в предположении, что стада различны по численности. Их ответ будет положительным. Если в стаде коз удастся выделить такую часть, не совпадающую со всем стадом, которая окажется эквивалентной множеству овец, то ббольшим является количество коз. Если же в стаде овец удастся выделить такую часть, не совпадающую со всем стадом, которая окажется эквивалентной множеству коз, то ббольшим будет количество овец. (В математике каждое множество считается частью самого себя, поэтому оговорка о несовпадении существенна.) Однако, как мы видели, такой способ не годится в случае бесконечных множеств. Действительно, в натуральном ряду можно выделить часть, с ним не совпадающую (а именно — множество квадратов), которая эквивалентна множеству квадратов; тем не менее натуральный ряд и множество квадратов, как мы видели, эквивалентны. Что же делать? Надо придумать такой критерий, который действует применительно к любым множествам. Решение состоит в том, чтобы к предложенной нашими скотоводами формулировке добавить некую клаузулу, излишнюю (хотя и ничему не мешающую) в конечном случае, но необходимую в случае бесконечном. Клаузула состоит в требовании неэквивалентности сравниваемых множеств. Полная