E1 = Aнеконс, (5)

где E1 и E2 – полные механические энергии частицы в точках 1 и 2 соответственно.

Формула (5) выражает закон изменения полной механической энергии частицы: приращение полной механической энергии частицы на некотором пути равно алгебраической сумме работ всех неконсервативных сил, действующих на частицу на том же пути.

Если Анеконс > 0, то полная механическая энергия частицы увеличивается, если же Анеконс < 0, то уменьшается.

Из закона изменения полной механической энергии частицы следует закон сохранения этой величины: если на частицу не действуют неконсервативные силы или работа неконсервативных сил на любом перемещении при переходе частицы из точки 1 в точку 2 равна нулю, то полная механическая энергия частицы сохраняется

(E1 = E2 = E = const), т. е.

E= K + U = const. (6)

Выражение (6), в частности, означает, что если на частицу действуют только консервативные силы, то сохраняется сумма кинетической и потенциальной энергий, однако при этом может происходить превращение потенциальной энергии в кинетическую и наоборот.

Закон сохранения полной механической энергии в форме (6) может быть записан и для системы частиц, не взаимодействующей с внешними телами, при условии, что в системе действуют только консервативные силы. Закон сохранения энергии остается инвариантным (форма его записи остается той же самой) при изменении начала отсчета времени. Это является следствием однородности времени.

16. УРАВНЕНИЕ СОСТОЯНИЯ. НУЛЕВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Законы термодинамики описывают поведение так называемых макроскопических систем, т. е. тел (твердых, жидких или газообразных), состоящих из большого числа частиц. Равновесное состояние макроскопической системы полностью характеризуется небольшим числом физических параметров. Состояние однородных тел полностью фиксируется заданием любых двух из трех величин: давления p, объема V и температуры T. Связь между p, V и Tхарактерна для каждого твердого тела, жидкости или газа, она называется уравнением состояния. Например, для идеального газа массы m уравнением состояния является уравнение Клапейрона – Менделеева:

pV = vRT,

где v = m/? – число молей газа массой m (? – молярная масса); R = 8,31 Дж/(К моль) – универсальная газовая постоянная.

В основе термодинамики лежат фундаментальные законы (начала), которые являются обобщением многочисленных наблюдений и выполняются независимо от конкретной природы образующих систему тел. Поэтому закономерности в соотношениях между физическими величинами, к которым приводит термодинамика, носят универсальный характер. Обоснование законов термодинамики, их связь с законами движения частиц, из которых построены тела, дается статистической физикой, задачей которой является выражение свойств макроскопических тел, т. е. систем, состоящих из большого количества частиц (молекул, атомов, электронов и т. п.), через свойства этих частиц и их взаимодействия.

Необходимым условием термодинамического равновесия в системе является равенство значений температуры для всех частей системы. Существование температуры – параметра, единого для всех частей системы, находящейся в термодинамическом равновесии, иногда называют нулевым началом термодинамики.

17. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Существуют два принципиально разных способа изменения внутренней энергии системы: первый связан с работой системы по перемещению окружающих тел (или работой этих тел над системой), второй – с сообщением системе теплоты (или с отводом ее) при неизменном расположении окружающих тел (или с работой на микроуровне, совершаемой молекулами одного тела над молекулами другого тела при их соприкосновении).

Первое начало термодинамики утверждает, что количество теплоты (тепла) dQ, сообщенное системе, идет на увеличение ее внутренней энергии dU и на совершение системой работы dA, т. е.

dQ = dU + dA.

Если система совершает термодинамический цикл, т. е. в конечном счете возвращается в исходное состояние, то изменения внутренней энергии не произойдет и полное количество тепла, сообщенное системе на протяжении цикла, будет равно совершенной ею работе.

Первое начало термодинамики представляет собой по сути закон сохранения энергии для систем, в которых существенную роль играют тепловые процессы. Это утверждение эквивалентно утверждению о невозможности создания вечного двигателя 1-го рода. Вечный двигатель 1-го рода – это такая машина, которая, будучи однажды запущена в ход, способна работать неопределенно долго и совершать полезную работу, не потребляя энергии извне. Поскольку ни при каком преобразовании энергии нельзя увеличить ее количество, а полезная работа в этом случае

может совершаться только расходуя внутреннюю энергию системы, то отсюда и следует невозможность создания такого двигателя.

Первое начало термодинамики позволяет определить энергетический баланс любого процесса, но не указывает на направление протекания этого процесса.

Многочисленные опыты показывают, что в отличие от механического движения все тепловые процессы необратимы. Это означает, что если реализуется какой-либо термодинамический процесс, то обратный процесс, при котором система проходит те же термодинамические состояния, но в обратном порядке, практически невозможен. Однако если создать условия, при которых система будет переходить из состояния 1 в состояние 2 бесконечно медленно через последовательность квазиравновесных (почти равновесных) состояний, то такой квазистатический процесс можно считать обратимым.

18. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Немецкий физик Р. Клаузиус (1822–1888) сформулировал в 1850 году второе начало термодинамики: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. Независимо от Клаузиуса в несколько иной форме этот принцип сформулировал в 1851 году У. Томсон: невозможно построить периодически действующую машину, вся деятельность которой сводилась бы к совершению механической работы и соответствующему охлаждению теплового резервуара. Обе формулировки второго начала термодинамики, являясь эквивалентными, подчеркивают существенное различие в возможностях реализации энергии, полученной за счет внешних источников, и энергии беспорядочного (теплового) движения частиц тела.

В 1865 году Клаузиус для определения меры необратимого рассеяния энергии ввел в термодинамику понятие «энтропия» (от греч. entrope – поворот, превращение). Согласно Клаузиусу, приращение энтропии dS при квазистатическом процессе (бесконечно медленном процессе, когда система переходит из одного состояния в другое последовательно через цепочку квазиравновесных состояний) определяется так называемой приведенной теплотой dQ/T (dQ – малое количество теплоты, полученное системой; T – абсолютная температура):

dS = dQ/T. (1)

Важность понятия энтропии для анализа необратимых (неравновесных) процессов также была показана

впервые Клаузиусом. Для необратимых процессов приращение энтропии больше приведенной теплоты:

dS > dQ/7. (2)

Из выражений (1) и (2) непосредственно следует закон возрастания энтропии, определяющий направление тепловых процессов: для всех происходящих в замкнутой системе

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату