back in the 1980s might well work on carriers. However, an internal-combustion technology looks like a better prospect. Here jet fuel would power a contained fuel-air detonation in a piston to fire the aircraft on its way. Internal-combustion catapults are simple and reliable in concept, and could use the existing jet fuel system on the flight deck.
• Automated Weapons Handling-Since weapons stowage, movement, buildup, loading, and arming eat up an enormous portion of a carrier's personnel, a high priority in the CVX design is to automate the weapons handling and loading on future aircraft carriers. One idea already under consideration involves using an unpowered, but human-controlled, bomb cart and loader that makes clever use of counterweights and levers to upload even the largest pieces of Navy ordnance. Other ideas include robotic inventory/handling control of weapons in the magazines.
• Advanced Flight/Hangar Deck Management-One of the Navy's biggest challenges is to improve the efficiency of operations on the flight and hangar decks. Specifically, they want to reduce the number of personnel involved in operations on the flight/hangar decks, to improve the quality of the work environment, and to increase the rate of sortie generation for the embarked air wing. Along with the 'pit stop' systems planned for use on CVN-77, robotic servicing equipment will probably be used for fueling, arming, aircraft handling/positioning, and for monitoring systems.
If the CVX-78 program manages to stay on track, the first ship of the class will be commissioned sometime in 2013, and a second unit will probably be added to the fleet about four or five years later. Beyond that, it's anybody's guess. We're talking about aircraft carriers that will be operating in a world fifty years from now. What will the world and the military balance of 2050 look like? I wish I knew. But if the people at NNS and NAVSEA have done their homework, the carriers being built and planned today will provide useful platforms to base the combat aircraft of tomorrow well past the halfway mark of the 21st century.
Tools of the Trade: Birds and Bombs
One day when I was a young man just beginning to design airplanes, the great person who founded the company that bore his name, Donald Douglas, took me by the shoulder and taught me a lesson that was simple, though vital to success. At the time, we were trying to generate business from the U.S. Navy. 'Navy planes take a beating,' he said. 'They slam down on the carriers when they land and get roughed up by the unforgiving elements of the high seas. If we want the Navy to buy our airplanes, we must build them rugged. They have to take punishment and still work.'
It is a matter of historical record that some things on carrier aircraft are terribly simple, and can't be easily replaced. The Curtis biplane that Eugene Ely first landed on the Pennsylvania in 1911 was equipped with many of the same items used by modern carrier aircraft. In particular, it had a small tailhook and a beefed-up tail structure so that the sudden shock of deceleration from the primitive arresting system would not tear the aircraft apart. However, good as these 'shade tree' solutions to getting on and off carriers were, they were just a start. Future naval aircraft would have even more systems to adapt them to the unique problems and challenges of the ocean environment. Hard as it is on sailors and ships, the ocean is a terror for pilots and aircraft, and the challenges it offers to airplane designers are unlike anything found on land.
First and most obvious are the problems of moisture and corrosion, which can literally eat a plane or helicopter from the inside out. Then there are the limitations of the ship's confined spaces for operating and storing aircraft, and the need to reduce the aircraft's 'footprint' while on the flight deck. These aircraft must also be able to operate in what has to be an 'expeditionary' environment, where crews may lack the maintenance and repair facilities of a land base. Then there is the matter of assisting the aircraft into and out of the air without destroying them. And like all military aircraft, these flying machines must be capable of carrying useful payloads an adequate distance with acceptable performance and a good survival rate.
With this in mind, it's not hard to understand why only a handful of companies worldwide have successfully built aircraft for naval service. Carrier aircraft are odd hybrids, combining the qualities of conventional planes that fly off concrete runways with the unique ability to operate off the confined spaces of warships. While naval aircraft perform virtually all the missions that land-based aircraft do, they are also tasked with a number of missions unique to the sea services. For example, the U.S. Air Force (USAF) takes a well-deserved pride in dropping laser-guided bombs (LGBs) down the center of buildings, but the U.S. Navy has aircraft that can do that too. In addition, these same Navy craft can hunt submarines, defend ships against missile attacks, and transfer supplies between vessels. These are just some of the many jobs unique to naval aviation, and Navy aircraft have to be equipped to handle the fullest possible range of roles and missions. This has generally made naval aircraft among the most capable and flexible designs of their design generations. Perhaps the best example of this was the classic F-4 Phantom II, which served not only with the Navy and Marine Corps, but also the USAF and over a dozen foreign countries. Such diversity and capability is not easy, and it comes at a high price.
In general, naval aircraft are both heavier and more complex than equivalent land-based craft. In an era where the cost of new aircraft is directly tied to their weight, USN aircraft generally are more expensive-which usually means smaller production runs and higher financial and technical risks for the manufacturers. Very few companies have been able to meet all of these challenges and turn a profit. For decades, just a few manufacturers have dominated the American naval aviation scene. Airframes made by Grumman, McDonnell Douglas, and Sikorsky were for many years all that you could find on the decks of U.S. carriers. In fact, the rare bird from a company like Lockheed or General Dynamics (traditional USAF contractors) was considered an aberration, a sign that the favored incumbent had made an error during the design competition. As a result, naval aircraft design grew inbred and lacked some of the innovation seen in land-based designs. Back in the 1970's, the Navy was fully briefed on the results of the USAF's Have Blue program. This was the flying prototype of the 1970's that led to the development of the Lockheed F-117A Nighthawk stealth fighter. But the USN chose to ignore the new technology in favor of more conventional aircraft-only one example of such lost opportunities. Another lost chance came when Texas Instruments began to develop its third-generation Paveway III LGB and the Navy stuck with the older-generation Paveway II-series bombs. With just these two decisions, the USN denied itself the two most effective weapons of the Gulf War.
By making a string of similar decisions, naval aviation leadership fostered a two-decade-long Dark Age that denied them some of the best that modern aerospace technology had to offer. The result was the near-mortal wounding of naval aviation as a community in the early 1990's, just at the time that they were being forced to find new roles, new missions, and even new enemies in the post-Cold War world. In an era when military power was becoming more 'precision' oriented, naval aviation still valued how well a pilot could deliver a 'stick' of unguided iron bombs. As of this writing, it has been over fifteen years since the Navy has taken delivery of a completely new tactical aircraft for fleet use. During that same period, over a half-dozen other major aircraft programs have been canceled or terminated. Desert Storm found the fleet ill-equipped for the first major post-Cold War conflict, and the part it did play was poorly publicized to a world hungry for the high-tech images of LGBs hitting their targets with eye-splitting precision.[43]
Even worse, following the Persian Gulf war, it began to appear that the top leadership of U.S. naval aviation could not even buy the aircraft and weapons they would need to fit into the new 'littoral warfare' strategy planned for the 21st century. There was even an attempt by the top leaders of the USAF to replace carrier aviation with a concept called 'Virtual Presence.' This was the notion that long-range bombers based in the continental U.S. and armed with precision weapons could threaten potential enemies enough that forward-based forces like carrier battle groups would not be necessary.[44] 'Virtual presence' was a nice idea, especially if you wanted to justify the purchase of additional B-2A Spirit stealth bombers. Unfortunately, it was completely unrealistic in a world where 'presence' really is the sight of a gray-painted USN ship near where a crisis